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Abstract

Annotation-based deductive verifiers have emerged in recent years as practical, capable, and

increasingly scalable tools for verifying programs in languages including C, Rust, Go, OCaml,

and Dafny. Intermediate verification languages (IVLs) like Why3, Boogie, and Viper have

made it significantly easier to build such verifiers by performing part of the translation from

high-level, expressive program logics to SMT formulas once and for all. But these verifiers

are difficult to fully trust: their toolchains comprise hundreds of thousands of lines of code

and bugs in any part can result in unsoundness. An alternate approach to building program

verifiers is the foundational one, where the language semantics, program logic, and user-

supplied proofs are defined in a proof assistant, giving an end-to-end soundness theorem.

These tools, including VST, CakeML, and Bedrock2, provide very strong guarantees but

require manual proof and are inaccessible to non-experts. The two approaches have largely

remained separate. IVL-based tools are not themselves verified, while interactive tools cannot

take advantage of the automation provided by the IVL and SMT-based pipelines.

In this thesis, we take steps towards bridging this gap by providing an implementa-

tion of the Why3 IVL in the Coq proof assistant, giving the first foundationally verified

IVL. First, we give a novel formal semantics for a core subset of the logic implemented by

Why3 – polymorphic first-order logic with recursive types, functions, predicates, and pat-

tern matching. We prove sound a compiler from this logic to first-order logic, giving the

first machine-checked soundness proofs for a sophisticated pattern matching compiler and

a first-order axiomatization of algebraic data types. We then develop a new framework to

idiomatically implement OCaml APIs in Coq and use this to produce a Coq implementation

of the Why3 logic API. Our IVL implementation is fully executable both within Coq and via

extraction to OCaml. Using the latter, we demonstrate our tool’s practicality by running

existing Why3-based tools and test suites against it, while the former allows our tool to serve

as a future back-end for foundational verifiers such as VST.
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Chapter 1

Introduction

Writing correct software is a critical but very difficult task. Program bugs are common,

leading to crashes, incorrect results, and security vulnerabilities. Accordingly, researchers

have developed a variety of techniques to detect and reduce bugs, including type systems,

static analysis, and abstract interpretation. In many settings, even these tools are not

sufficient; we want a guarantee of functional correctness : that a program satisfies a particular

specification, written in a formal logic, for any possible input. This allows one to prove strong

correctness properties about programs, especially important in safety-critical settings.

Formal verification tools allow users to specify and prove such correctness properties.

Rice’s Theorem implies that program correctness is undecidable, so fully automated verifica-

tion for arbitrary programs is impossible. Nevertheless, the increasing power of Satisfiability

Modulo Theories (SMT) solvers [16] and proof assistants has kickstarted the development

of practical program verifiers for real-world languages. These tools fall into two categories.

Interactive verifiers are built within proof assistants; the user writes down a specification in

the theorem prover and manually proves their program correct. Meanwhile, semi-automated

verifiers require some input from the user – generally in the form of function pre- and post-

conditions, loop invariants, and assertions – and generate verification conditions (VCs) from

the annotated program, sending these logical formulas to a solver (generally an SMT solver)

1



to determine validity.

In these semi-automated tools, the source program logic should be expressive enough

to permit natural, rich program specifications, but this leads to a large gap between the

source logic and the much simpler logic supported by SMT solvers. Much of this transla-

tion is tricky but not language- or solver-specific. Intermediate verification languages (IVLs)

provide a solution: they handle part of this translation once and for all, enabling multi-

ple source-language verifiers to target a higher-level interface than SMT formulas and thus

greatly reduce the burden of creating such translational verifiers. Widely used IVLs in-

clude Why3 [24], Boogie [13], and Viper [83]. In recent years, this approach has proved

extremely fruitful and has led to a proliferation of translational verifiers for almost every

mainstream programming language, including Frama-C for C [61], Creusot for Rust [44],

Nagini for Python [45], Gobra for Go [112], and the verification-aware language Dafny [72],

which compiles to C#, Java, JavaScript, Go, and Python.

The essential difference between interactive and semi-automated tools is their contrasting

approach to the fundamental tradeoff between expressivity and automation. Today’s inter-

active tools (e.g. VST [7], CakeML [66], and Bedrock2 [47]) have access to the full power of

higher-order proof assistants and thus have essentially unbounded expressivity; this enables

one to define very powerful program logics capable of reasoning about memory, concur-

rency, recursion, randomness, and more. Semi-automated tools, meanwhile, are limited to

first-order, decidable theories supported by SMT solvers. However, as their names suggest,

the user burden is significantly higher for interactive tools. Not only are the systems too

expressive for general-purpose automation, but even writing specifications requires signifi-

cant expertise in using proof assistants and the program logic in question; this makes such

tools inaccessible to non-experts. In contrast, the limited expressivity, SMT-based automa-

tion, and friendly syntax of semi-automated verifiers (where specifications are written as

comments similar to the programming language in use) makes such tools significantly more

accessible. These tools have seen increasing use in industry, including by developers with
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no formal-methods experience (e.g. the AWS Encryption SDK for Dafny [1]). Similarly, for

tool developers, IVLs have greatly reduced the burden of building semi-automated verifiers,

reducing the hard problem of translating an expressive program logic to first-order formulas

into the easier one of encoding the source-language-specific reasoning into a high-level lan-

guage or logic. Interactive tools are much more difficult to build, requiring very large proof

and development effort to handle new languages with new custom automation required for

each one.

Despite these differences, both classes of tools are used in similar ways to verify imper-

ative programs. Such a task is tricky, often requiring program logics based on separation

logic [94] for reasoning about heap-manipulating programs, frequently with extensions for

concurrency, nondeterminism, randomness, and more. Even proving weaker properties like

memory safety is often nontrivial, and proofs can easily become unmanageable when com-

bined with functional-correctness reasoning. A widely adopted solution is to separate such

functional-correctness proofs into three steps: (1) defining a functional model of an impera-

tive program, (2) proving that the imperative program refines the functional model, and (3)

proving desired high-level properties of the model. Thus, the low-level details – proving valid-

ity of pointers, absence of overflow, etc – are kept separate from the high-level mathematical

reasoning about the domain of interest.

This technique has been successfully applied at scale in many projects. C programs in

the domains of cryptography [8], error-correcting codes [37], numerical methods [105], and a

networked server [62] were verified in the Coq proof assistant; the imperative reasoning uses

the Verified Software Toolchain (VST) [7] program logic for C (§1.1.1), while the functional

correctness proofs use pure Coq reasoning and libraries such as Mathematical Components

[54] for linear algebra, and the Flocq [27] formalization of floating-point arithmetic. In

the semi-automated world, similar layered approaches were used in Dafny for verifying dis-

tributed systems in the IronFleet project [56] and for verifying a large-scale authorization

engine used in production at Amazon Web Services [31]. Other efforts involve a combination
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of tools: in the VerifiedSCION project [92], the imperative and functional model proofs were

completed in Gobra and the Isabelle proof assistant, respectively.

This paradigm has influenced the design of IVLs, which automate part of this process

once and for all. Boogie is a simple imperative language with first-order specification focused

on efficient VC generation; it aims to automate Hoare-style reasoning about imperative

programs. Viper is an IVL for verifying programs with separation logic; it is well-suited to

reasoning about heap-manipulating programs and to serve as a target more powerful program

logics (e.g. those based on Concurrent Separation Logic [87]). However, it is less capable of

dealing with functional models (hence the functional model reasoning in VerifiedSCION used

Isabelle rather than Gobra, which is built on Viper). Why3, meanwhile, is more generic and

includes many facilities for reasoning about functional models, including first-class notions of

recursive types, functions, and predicates, while providing back-ends for both automated and

interactive solvers as well as mechanisms for users to guide the verifier (e.g. for induction).

However, it does not have a built-in notion of separation logic and it includes a more complex

ML-like language as opposed to Boogie’s simple imperative one.

This automation is useful, but how do we know that these program verifiers are themselves

bug-free? Particularly dangerous are soundness bugs, where the verifier reports that the

input program is verified, but in fact the specification does not hold. Today’s interactive

verifiers are designed with very strong soundness guarantees: the typical approach includes a

formal semantics for the programming language of interest and a program logic proved sound

with respect to this semantics; the user carries out proofs in that program logic within the

proof assistant. Thus, these tools are foundational : one proves a single, machine-checked

theorem that the specification indeed holds according to the language’s formal semantics.

If the tool is connected to a verified compiler, the guarantees may extend further to the

assembly language layer or below. For example, VST is a foundational program logic for C

verification; it is connected to the CompCert [74] verified C compiler. In the entire toolchain,

the trusted computing base (TCB) is quite small, comprising the implementation of the proof
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assistant1 and the formalization of the language semantics. Bedrock2 [47] follows a similar

approach, extending the soundness guarantees further to the hardware layer.

Semi-automated verifiers, on the other hand, have no such guarantees. There are many

places in the toolchain where errors could have crept in — the source verifier’s translation of

source goals to intermediate goals, the back-end solver’s decision of satisfiability or validity,

and the IVL framework’s non-trivial translation can all introduce errors. Each of these parts

is a large, complex piece of software, and the total amount of trusted code can easily exceed

hundreds of thousands of lines.2 Additionally, even if all parts are individually correct,

differences in assumptions or semantics between layers can still produce unsoundness. Even

worse, these components often do not have well-defined semantics; one could not even state

a theorem that the toolchain, or individual components, is sound.

This thesis addresses the question of how to bridge this gap and retain the benefits of the

IVL-based approach to building verifiers while achieving foundational soundness guarantees.

The crucial element is to verify the IVL translation; this would significantly reduce the

burden of building foundationally verified program verifiers (such as a future first-order

version of VST built on an IVL), much like IVLs have made it easier to build verifiers in

general. We can prove the soundness of a key part of the pipeline once and for all and retain

the benefits of the IVL-based approach, providing the user with foundational soundness

guarantees without any additional proof effort or required expertise.

We target the Why3 IVL, which provides an expressive logic for writing and reasoning

about functional models, including polymorphism, algebraic data types (ADTs), pattern

matching, recursive functions, and inductive predicates. We call the logic implemented by

Why3 P-FOLDR (Polymorphic First-Order Logic with Dataypes and Recursion); it is

1The de Bruijn criterion asserts that proof assistants should have small proof checkers; this is the com-
ponent that needs to be trusted. Coq satisfies the de Bruijn criterion. For a more thorough examination of
CompCert’s TCB, see [82].

2For example, verifying C code with VST involves a TCB (semantics+Coq kernel) of approximately
20K LOC, while the Frama-C+Why3+SMT toolchain comprises 500K-1M LOC, depending on the back-end
solver(s) used. These estimates do not include lower level components (e.g. OCaml compiler, hardware, etc).
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similar to the logics implemented by virtually every semi-automated verifier that permits

functional model reasoning (e.g. Dafny, VeriFast [59] – see §1.1.2). Transforming this logic

into the much simpler first-order logic used by SMT solvers is highly nontrivial, and we

need an appropriate formal semantics to prove this transformation sound and remove this

compilation from the TCB of Why3 and its clients. To that end, this thesis makes the

following contributions:

1. We introduce P-FOLDR – similar to the pen-and-paper description given by Filliâtre

[48] – in Chapter 2 and give a novel formalization of its semantics in the Coq proof

assistant in Chapter 3. Our formalization constructs an explicit model in Coq, allowing

us to prove consistency and rule out pathological behavior including non-well-founded

recursive definitions. We give a sound proof system for P-FOLDR and use it to prove

Why3 goals from the standard library.

2. We prove sound several of the transformations Why3 uses to encode recursive struc-

tures as first-order formulas. We give the first formally verified sophisticated pattern

matching compiler (Chapter 4) and the first machine-checked proof of a first-order

axiomatization of algebraic datatypes (Chapter 5).

3. We propose a lightweight design principle and small framework to write stateful pro-

grams in Coq while extracting to idiomatic OCaml. We use this to implement parts

of the Why3 API in Coq, producing code executable both within Coq and compatible

with the existing Why3 OCaml toolchain. We show how such an implementation can

compose with our soundness proofs to achieve end-to-end guarantees and demonstrate

that it is practical by testing on real-world examples (Chapters 6 and 7).

While other IVLs have formally validated implementations (see §1.2) – ones that produce

certificates that, if checked successfully, prove soundness on a particular input – this thesis

provides the first foundationally verified implementation of a practical, real-world IVL, the

first IVL implemented within a proof assistant, and the first formal semantics and proved-
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Figure 1.1: Foundational Verification

sound compilation for an IVL with features such as ADTs, pattern matching, recursive

functions, and inductive predicates.

The Coq system described in this thesis is available at https://github.com/joscoh/

why3-semantics/tree/thesis. Parts of this thesis (particularly Chapter 3 and parts of

Chapter 7) were previously published [36]. The semantics described in this thesis has been

improved since the paper’s publication. Differences include the addition of pattern matching

exhaustiveness checking, a more sophisticated termination checker, an improved implemen-

tation of α-equivalence and α-conversion, and the use of efficient sets and maps from the

std++ library [65]. The ideas in §6.2 were presented at the CoqPL 2025 workshop [35].

1.1 Background

1.1.1 Foundational Verifiers

Figure 1.1 shows the typical pipeline for a foundational, interactive verifier. A tool parses

the user’s source code into an abstract syntax tree (AST). Written in a proof assistant, the

verifier includes a formal semantics for the programming language the AST represents, a
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program logic (generally some form of separation logic), and a proof that the program logic

rules are sound according to the semantics. The user then writes down their specification as

a predicate in the (deeply embedded) program logic and proves their program correct using

the proof rules of the program logic (generally assisted by custom tactics/proof automation).

The soundness theorem ensures that if this proof succeeds, the specification indeed holds

according to the defined semantics. In many cases, these verifiers are connected to verified

compilers – compilers that generate a proof that the translation from the source to the

target language (e.g. C and assembly) preserves the semantics. This composes with the

program logic’s soundness proof and extends the guarantees down to the target. Examples of

foundational verifiers include VST [7] for C, CakeML [66], a verified bootstrapping compiler

for ML, Bedrock2 [47], which compiles from a C-like language to hardware, and Verifiable

P4 [110] for the P4 network packet programming language.

i n t minimum( i n t a [ ] , i n t n ) {
i n t i , min ;
min=a [ 0 ] ;
f o r ( i =0; i<n ; i++) {

i n t j = a [ i ] ;
i f ( j<min ) min=j ;

}
return min ;

}

Def in i t i on minimum spec :=
DECLARE minimum

WITH a : va l , n : Z , a l : l i s t Z
PRE [ t p t r t i n t , t i n t ]

PROP (1 ≤ n ≤ I n t . max s igned ; F o r a l l r e p a b l e s i g n e d a l )
PARAMS ( a ; V in t ( I n t . r e p r n ) )
SEP ( da t a a t Ews ( t a r r a y t i n t n ) (map Vint (map I n t . r e p r a l ) ) a )

POST [ t i n t ]
PROP ( )
RETURN ( Vint ( I n t . r e p r ( f o l d r i g h t Z . min ( hd 0 a l ) a l ) ) )
SEP ( da t a a t Ews ( t a r r a y t i n t n ) (map Vint (map I n t . r e p r a l ) ) a )

Figure 1.2: A function to compute the minimum value of an array in C and its VST speci-
fication
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To demonstrate how such tools work, we show an example program verified in VST.

Figure 1.2 shows a C program that computes the minimum value of a nonempty array and

a possible function specification in VST, which takes the form of a precondition (marked

PRE) and a postcondition (marked POST). In the precondition, one can specify a pure Coq

proposition in PROP (in this case that n is bounded), express the C function arguments as

Coq variables in PARAMS, and specify the contents of memory in the SEP clause. In this

example, the precondition asserts that there is a list of integers at pointer a whose contents

are given by Coq list al. In the postcondition, one can similarly specify a pure proposition

(PROP), the return value (RET - in this case the result of folding the Coq Z.min function

over the list al), and the contents of memory (unchanged). A crucial part of VST’s power

is that Coq itself is the assertion language – one can specify propositions, return values,

and memory contents as Coq functions. This makes the logic powerful and higher-order

but difficult to automate effectively with general-purpose tools like SMT solvers. Here, the

functional model is that of Coq’s lists, while the function specification relates the return value

with a particular operation on the model (folding Z.min over the list). One can use VST’s

custom Floyd [30] proof automation – tactics that perform symbolic execution and apply

the rules of the VST program logic – to prove that the AST generated by minimum satisfies

minimum spec. Then, proofs about the functional model (e.g. that the result appears in the

list if the list is non-empty) use ordinary Coq reasoning; the total proof burden is about 100

LOC.

1.1.2 Semi-Automated Verifiers and IVLs

Figure 1.3 shows the same minimum function implemented in the Dafny verification-

aware programming language. The annotations include a precondition (requires) that the

input array is nonempty, a postcondition (ensures) that the returned element is smaller

than everything in the array (note that this is weaker than the VST spec above), and loop

invariants (invariant) necessary to prove the specification. Note that the annotation burden

9



method minimum ( a : array<int >) returns (m: i n t )
r equ i r e s a . Length > 0
ensures ∀ i : i n t : : 0 ≤ i < a . Length =⇒ m ≤ a [ i ]
{

m := a [ 0 ] ;
var i := 1 ;
whi le ( i < a . Length )
i n va r i an t 1 ≤ i ≤ a . Length
i n va r i an t ∀ j : i n t : : 0 ≤ j < i =⇒ m ≤ a [ j ]
{

i f ( a [ i ] < m) {
m := a [ i ] ;

}
i := i +1;

}
return m;

}

Figure 1.3: The minimum function in Dafny

is quite light for this simple example and that the specifications themselves are written in a

combination of first-order logic and program syntax (e.g. for indexing into arrays). In this

example, we do not relate the imperative method to a functional model (which in Dafny can

be represented as a pure function), but it would be straightforward to do so.

These verifiers work by translating the program and the annotations into a series of

verification conditions, often by using weakest-precondition-style reasoning. For example,

the loop body can be represented as (using primes for updated variables):

L := (a[i] < m→ m′ = a[i]) ∧ (¬(a[i] < m)→ m′ = m) ∧ i′ = i + 1

To prove that loop invariant I is truly an invariant, the tool could check the validity of the

formula I → L∧I ′ by negating the formula and proving unsatisfiability with an SMT solver.

The precise language of such formulas depends on the verifier. For example, Dafny uses

the Boogie IVL as its back-end, outputting Boogie programs and first-order logic formulas.

Frama-C uses Why3 as its back-end and thus outputs (richer) Why3 logic definitions.

Semi-automated verifiers with expressive specification languages need to compile the

10



Program + Program Logic

First-Order Logic

P ∗Q

a

b c

d

′a

wp(P, c)

Memory Reasoning

Recursive Structures

Polymorphism

VC Generation

Program

FOL

a

b c

d

P ∗Q

′a

wp(P, c) Boogie

Viper

Program

FOL

P ∗Q

wp(P, c)

a

b c

d

′a Why3

WhyML

Figure 1.4: IVL-based verifier pipeline instantiated for Boogie, Viper, and Why3

following features not directly supported by SMT solvers:

• Any source-language-specific reasoning (e.g. for object-oriented programming)

• Some form of reasoning about heaps and memory (e.g. Separation Logic)

• Recursive structures that allow one to define functional models (e.g. ADTs, pattern

matching, recursive functions)

• Polymorphism

• VC generation (i.e. transforming an imperative program into logical formulas)

These tasks do not have a defined order, and different IVLs choose different parts of the

pipeline to compile to first-order logic (Figure 1.4). Boogie compiles the last two tasks,

providing a small imperative language with polymorphic first-order specifications. Viper

supports separation logic (more precisely, Implicit Dynamic Frames [101], a variant), pro-

viding a back-end that targets Boogie (and an SMT-based symbolic execution back-end).

Why3 consists of two IVLs (§1.1.3): the Why3 logic (our focus) includes polymorphism and

recursive structures, while ML-like WhyML, built atop the logic, includes VC generation

and reasoning about non-aliasing memory.

Thus, the choice of IVL determines what compilation is done in the front-end and what
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can be left to the back-end. Dafny, for example, must compile recursive structures and

heap reasoning in the front-end. Frama-C uses the Why3 logic as a back-end, and therefore

does its own VC generation. Creusot translates to WhyML, and therefore only needs Rust-

specific reasoning in the front-end (though it does need weakest-precondition reasoning to

reconstruct a structured program from a control flow graph). Gobra uses Viper as a back-

end; its front-end reasons about concurrency and other Go-specific features, as well as about

recursive structures [10].

1.1.3 Why3 and Coq

As we have seen, Why3 consists of both the Why3 logic and the WhyML language (whose

VC generator produces formulas in the Why3 logic) [50]. Though Why3 can be used directly

to write verified software, as WhyML can be extracted to OCaml, it mainly serves as a back-

end for other verification tools. Why3 supports about 20 provers, including SMT solvers

(Z3 [43], CVC5 [12], and Alt-Ergo [38], among others), other numeric and first-order logic

solvers (Vampire [95], Gappa [42], etc.), and proof assistants (Coq [106], Isabelle [85], and

PVS [89]). Accordingly, Why3 is used in many verification tools and projects, including

Frama-C for C, Creusot for Rust, EasyCrypt [17] for cryptography, SPARK 2014 for Ada,

as well as tools for verifying OCaml [93], quantum circuits [32], and distributed systems

[76]. Some of these tools construct WhyML programs, while others directly create terms

and formulas in Why3’s logic, which is accessible via an external OCaml API.

Why3’s logic language is structured into theories, consisting of abstract or concrete def-

initions for type, function, and predicate symbols, as well as lemmas, goals, axioms, and

imports of previously defined theories. Verifying a theory reduces to verifying a series of

proof tasks, consisting of a context of declared symbols and definitions, a set of assumptions,

and the goal to be proved. Why3 proves these goals by applying a series of transformations

to the tasks based on user input and the specific features supported by the solver in use —

for example, axiomatizing inductive types or inlining function definitions.
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We use the Coq proof assistant [106] for our formalization. Based on a modern variant of

the Calculus of Inductive Constructions (CIC), Coq implements a higher-order logic through

a dependently typed programming language Gallina. To prove theorems in Coq, one can

either proceed interactively using tactics that modify the proof state or directly write proof

terms in Gallina; we utilize both approaches as needed. In our formalization, we make

extensive use of dependent types, dependent pattern matching, and several dependently

typed data structures, described in §3.1 and §3.2. Coq is a particularly good choice for our

formalization; we need powerful inductive types capable of encoding and reasoning about

W-types (see §3.2.1), induction over arbitrary well-founded predicates, and an impredicative

Prop (see §3.2.5), among other features. We also make heavy use of Coq’s ability to extract

Gallina code to OCaml to connect our IVL implementation with the existing Why3 toolchain

(Chapter 6). Other, simpler systems like LF [55] have smaller kernels but lack many of these

features.

Since Why3 is a classical logic and Coq implements an intuitionistic logic, our proof

development assumes 3 axioms: classical logic (law of the excluded middle), indefinite de-

scription (Hilbert’s ϵ operator), and functional extensionality. All are included in Coq’s

standard library and are known to be consistent with Coq and each other (see §7.5).

Why3 and Coq already interact in several ways. Coq is one of the back-end proof assis-

tants for Why3, providing support for goals outside the scope of SMT solvers. Additionally,

one can realize Why3 theories in Coq (and PVS) by giving a model for the theory axioms

and definitions. For example, one can realize the Why3 int theory with Coq’s Z library.

Then, future Coq proofs of Why3 goals can use the instantiated datatypes and definitions

directly.
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1.2 Related Work

In this section we discuss existing work related to verifying program verifiers, combining

automated and foundational approaches, and verifying IVLs. In subsequent chapters, we

present additional relevant related work.

1.2.1 Improving Automation of Interactive Verifiers

There are many recent efforts to improve the automation of interactive verification tools.

One group of such efforts focuses on using SMT solvers within proof assistants. Early

work included adding SMT solvers to Isabelle’s famous Sledgehammer tactic [19], which

invokes various external provers to automatically find proofs. Recent extensions include

proof reconstruction in Isabelle [99].

Meanwhile, in Coq, SMTCoq [46] is a plugin allowing one to call external SMT solvers

within Coq to prove goals; it checks the solver’s certificate to ensure that the process is

sound. Sniper [23, 22] extends this to first preprocess Coq goals to eliminate/axiomatize

recursive structures, generating proof tactic scripts to assert that the procedure is sound (we

discuss Sniper in more detail in §5.6). Itauto [18] uses a SAT solver implemented and proved

correct in Coq. CoqHammer [40] is a Coq version of Sledgehammer. In this thesis, we focus

on the compilation of P-FOLDR to first-order logic; to soundly connect this to SMT solvers

within Coq, such efforts would be critical.

1.2.2 Other Automated and Foundational Tools

Other efforts have focused on improving the automation of foundational tools outside the

IVL- and SMT-based pipeline. RefinedC [98] provides automated but foundational rea-

soning about C programs in Coq; it does not use SMT solvers but rather a fragment of

separation logic that enables automatic proof search without backtracking. This has been

further extended to Rust programs with RefinedRust [52]. VST-A [114] augments VST with
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annotations. It decomposes the verification problems into symbolic execution of straight-line

Hoare triples, reducing the burden on the user while retaining foundational guarantees. In

both cases, one must still prove residual goals in Coq, though the goals are expected to be

simple.

1.2.3 Verification of IVL-Based Verifiers

More directly related to this thesis is the substantial work on verifying IVL-based verifiers.

In this section, we focus on work related to VeriFast, Boogie, and Viper; in the next section

we discuss Why3. Figure 1.5 uses the notation of Figure 1.4 to show which parts of the IVL

pipeline each piece of related work (and this thesis) encompass.

VeriFast [59] is a separation-logic-based verifier for C and Java. While it is not quite an

IVL, it serves a similar purpose when supporting multiple front-end languages. Featherweight

VeriFast [60] formalizes and proves sound in Coq a core subset of VeriFast. Recent work

[111] extends VeriFast with a proof-of-concept to generate Coq proof certificates to validate

soundness against the CompCert C semantics. Both of these efforts operate at a different

level of the abstraction hierarchy than our work, focusing on memory safety conditions and

separation logic predicates at the source language level. Both omit recursive functions and

inductive datatypes (which are included in VeriFast’s specification language) and do not

verify function termination.

Vogels et al. [108] prove sound a VC generator for a Boogie-like language in Coq; they also

prove sound a translation from a toy object-oriented language to Boogie. The same authors

[109] then prove correct a more efficient VC generator for the Boogie-like language that avoids

exponential blowups. More recently, Parthasarathy et al. [91] develop a certifying version of

Boogie that generates Isabelle proof certificates to validate successful runs of Boogie’s VC

generation and compilation. Parthasarathy et al. [90] extend this to develop a certifying

implementation of Viper’s Boogie back-end. Dardinier et al. [41] extend this work further

to provide a general framework for certifying the soundness of separation-logic-based IVL
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Figure 1.5: Formally Verified (Why3) and Validating (Viper/Boogie/VeriFast) IVLs
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toolchains, instantiating this for Viper and a simple concurrent front-end language.

Though these efforts have similar goals as our work, they are ultimately somewhat or-

thogonal, and they differ in several key ways. First, they provide certifying, rather than

certified, implementations. That is, they produce proof scripts that, if successfully checked,

show that the tool was indeed sound on a particular input. Our approach proves sound

the relevant compilation steps once and for all – we prove the stronger property that the

compiler will succeed and give a sound result on all well-typed inputs. Second, these efforts,

like Featherweight VeriFast, focus on different steps in the verifier pipeline: VC generation

and separation logic. None handle recursive types, pattern matching, inductive predicates,

or pure recursive functions (though recursive separation-logic predicates are included in the

Viper formalization, and polymorphism is included in the Boogie one). It is instructive to

note the differences between the semantics: the Viper semantics are operational and ax-

iomatic, reasoning about heaps, program states, and separation logic operators. Meanwhile,

we are focused on pure logic rather than stateful programs; accordingly, our semantics is de-

notational, constructing a model of Why3’s logic in Coq that correctly interprets algebraic

datatypes, recursive functions, and inductive predicates. The key proof steps also differ:

while Boogie’s certifying implementation must reason about control flow graph transforma-

tions and Viper’s reasons about heaps and separation logic predicates, we must prove the

soundness of axiomatizing recursive structures as first-order formulas. Finally, our verified

IVL runs fully within a proof assistant (rather than as a certificate-producing extension to

an existing tool); this would allow it to seamlessly serve as a back-end for other foundational

tools.

1.2.4 Verification of Why3

Herms et al. [57, 58] develop a verified implementation of an older version of Why3 (then

called Why) in Coq, including a verified VC generator for a subset of what is now WhyML.

Their semantics are similar, though not identical, to ours for the basic first-order logic
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(§3.1). However, their formalization only includes the core first- order logic; it does not

include polymorphism, ADTs, pattern matching, recursive functions, inductive predicates,

or the ϵ operator. It focuses on proving the VC generation correct and it does not reason

about lower-level transformations on the terms and formulas to enable automated solving.

More recently, Garchery [53] develops a certificate-based approach to validate Why3 trans-

formations and writes a proved-correct certificate checker in the Lambdapi/Dedukti proof

assistant. The certificates are based only on a polymorphic first-order logic, similarly without

pattern matching or recursive structures (though the system includes an induction principle

over integers), and the semantics are based on a shallow embedding in Dedukti. In princi-

ple, these certificates could be combined with our semantics to validate, rather than verify,

certain transformations.
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Chapter 2

P-FOLDR – The Logic of Why3

In this chapter, we describe P-FOLDR, the logic of core Why3. We describe the syntax,

typing rules, and semantics of this logic in informal notation. We will briefly describe our

Coq formalization of the syntax and typing rules; in the next chapter, we detail our novel

Coq formalization of the recursive semantics. This logic was previously described by Filliâtre

[48]; our presentation is largely similar, with several exceptions:

• Our typing rules for patterns and pattern matches are slightly more permissive, allow-

ing pattern matches on any type (§2.2).

• We give an explicit algorithm for checking termination of recursive functions and pred-

icates (§2.2.2).

• Our semantics for pattern matching differs significantly from Filliâtre’s compilation-

based approach (§2.3).

• We explicitly require that algebraic data types are inductive, a condition missing from

Filliâtre’s description (§2.3).

P-FOLDR extends classical first-order logic with the following constructs:

• Rank-1 polymorphism

• let- and if-expressions

• Hilbert’s ϵ choice operator
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• Algebraic data types

• Pattern matching

• Recursive functions and predicates

• Inductive predicates

Recursive types, functions, and predicates can be mutually recursive. Figure 2.1 shows an

example of some definitions and statements in this logic. It defines the type of polymorphic

lists as a recursive data type, defines the recursive predicate mem by pattern matching over

this type, defines an abstract type and predicate symbol, defines an inductive predicate

denoting sortedness of lists, and finally states a lemma that determines when adding an

element to the front of a list preserves sortedness.

Why3 is explicitly intended to provide “a common specification language that aims at

maximal expressiveness without sacrificing efficiency of automated proof search” [24]. In

other words, P-FOLDR aims to be expressive enough to write rich, functional program spec-

ifications while still allowing efficient automation via translation to SMT and other solvers.

Of course, Why3 is not the only tool with such a goal, and virtually all semi-automated ver-

ifiers today that aim to enable functional-model-level reasoning implement a broadly similar

logic. For example, VeriFast (not built on an IVL) includes ADTs, pattern matching, and

recursive functions, while Dafny includes all of P-FOLDR as well as other features like built-

in polymorphic maps. Thus, no matter the IVL or toolchain, semi-automated verifiers have

converged to a roughly common set of features achieving this tradeoff between expressivity

and automation.

2.1 Syntax

Figure 2.2 shows the syntax of types, patterns, terms, and formulas in P-FOLDR. Our Coq

formalization is a deep embedding; each part of the logic corresponds to a Coq inductive

type. Types (τ in informal notation, vty in our Coq formalization) consist of built-in types int
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type l i s t ’ a = N i l | Cons ’ a ( l i s t ’ a )

pred icate mem ( x : ’ a ) ( l : l i s t ’ a ) =
match l with
| N i l → f a l s e
| Cons y r → x = y ∨ mem x r
end

type t
pred icate l e t t
axiom l e t r a n s : ∀ x y z : t . l e x y → l e y z → l e x z

i nduct i ve s o r t e d ( l : l i s t t ) =
| So r t e d N i l :

s o r t e d N i l
| Sorted One :

∀ x : t . s o r t e d ( Cons x N i l )
| Sorted Two :

∀ x y : t , l : l i s t t .
l e x y → s o r t e d ( Cons y l ) → s o r t e d ( Cons x ( Cons y l ) )

lemma sorted mem :
∀ x : t , l : l i s t t .
(∀ y : t . mem y l → l e x y ) ∧ s o r t e d l ↔ s o r t e d ( Cons x l )

Figure 2.1: A Why3 ADT, recursive predicate, inductive predicate, and lemma

τ ∈ Types := int | real | α | t(τ, . . . , τ)
p ∈ Patterns := xτ | f(τ, . . . , τ)(p, . . . , p) | | (p | p) | p as xτ

t ∈ Terms := cint | creal | xτ | f(τ, . . . , τ)(t, . . . , t)
| let xτ := t in t | ϵxτ , f | if f then t else t
| (match t with | p→ t | . . . | p→ t end)

f ∈ Formulas := p(τ, . . . , τ)(t, . . . , t) | ∀xτ , f | ∃xτ , f | t = t | f ∧ f
| f ∨ f | f =⇒ f | f ⇐⇒ f | ¬f | ⊤ | ⊥
| let xτ := t in f | if f then f else f
| (match t with | p→ f | . . . | p→ f end)

Figure 2.2: Syntax of types, patterns, terms, and formulas
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d ∈ Def := datatype a with . . . with a | recursive δ with . . . with δ
| inductive i with . . . with i

a ∈ ADT := t(α, . . . , α) = f(α, . . . , α)(τ, . . . , τ) : τ | . . .
| f(α, . . . , α)(τ, . . . , τ) : τ

δ ∈ RecFun := function f(α, . . . , α)(xτ , . . . , xτ ) : τ = t
| predicate p(α, . . . , α)(xτ , . . . , xτ ) = f

i ∈ IndPred := p(α, . . . , α)(τ, . . . , τ) = f | . . . | f

Figure 2.3: Syntax of concrete definitions

and real, type variables (α, typevar), and the application of a previously declared type symbol

(t, typesym) to a list of type arguments. We denote xτ to be a variable x of type τ (in Coq,

vsymbol := string * vty). Patterns (p, pattern) consist of variables, constructor application,

wildcards, disjunctions, and binding (where p as x matches p and binds x to the result).

Terms (t, term) consist of constant integer and rational literals, variables, function symbol (f,

funsym) application, let-binding, ϵ choice, conditionals, and pattern matching. Formulas (f ,

formula) consist of predicate symbol (p, predsym) application, quantifiers, equality, binary

operators (and, or, implies, and iff), negation, true/false, let binding, conditionals, and

pattern matching. Note that terms and formulas are mutually recursive, as a term conditional

involves a formula. Also note that this logic is first-order: quantifiers, let-bindings, match

expressions, and ϵ only bind terms, not formulas.

Figure 2.3 shows the syntax for concrete definitions: mutually recursive ADTs, recursive

functions and predicates, and inductive predicates. An ADT consists of a nonempty list

of constructors, a recursive function or predicate contains a list of variable arguments and

a body, and an inductive predicate consists of type arguments and a list of constructors.

In addition to these concrete definitions, we can additionally have abstract definitions for

type, function, and predicate symbols (our Coq formalization separates recursive and non-

recursive functions/predicates but is otherwise identical to the syntax shown). A context

Γ is a list of concrete and abstract definitions; we will ultimately define typing, truth, and

validity with respect to a context.
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2.2 Typing

P-FOLDR is typed: the judgments are that, in context Γ, a type τ is valid (valid type Γ τ), a

term t has type τ (term has type Γ t τ), and a formula f is well-typed (formula typed Γ f). We

show the typing rules for types, patterns, terms, and formulas in Figures 2.4, 2.5, 2.6, and 2.7,

respectively. Our type system is broadly similar to the pen-and-paper version [48], though

it differs in a few places. The primary change concerns pattern matching and ADTs: we

remove the requirement that a term/formula pattern match must be performed on an ADT

and replace this with the condition that a constructor in a pattern must truly be an ADT

constructor. This makes the type system more permissive; one is free to match, for instance,

an integer against a variable or wildcard, but any constructor pattern enforces the ADT

condition when needed. Because we need to know the declared ADTs, our typing judgments

are defined in a context, whereas Filliâtre’s type system requires only a signature (which

simply lists the declared function/predicate/type symbols), checking the ADT conditions

separately. We also include the exhaustiveness check on patterns in the typing rules (we

will describe this check in detail in §4.2.2). Finally, we include a missing condition that the

return type for pattern constructors and function applications is valid and we add the ϵ rule.

We make a few further remarks. First, note that for function and predicate application,

the applied types are substituted for the symbol’s type parameters. For instance, given

function symbol reverse(α)(list(α)):list(α) and term reverse(int)([1; 2]), int is substituted for

α when typechecking. Second, the typing rules place restrictions on free variables in patterns:

in a constructor pattern, no two argument patterns can have overlapping free variables (e.g.,

Why3 does not allow x :: x :: t as a pattern), and the free variables in a disjunction pattern

must be identical.

Typing definitions (ADTs, recursive functions, etc) is more complicated. Each has general

well-formedness assumptions (e.g. the return types of ADT constructors are correct) as

well as particular structural checks: ADTs must be inhabited, pattern matches must be

exhaustive, recursive functions must be (syntactically) terminating, and inductive predicates
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Γ ⊢ int Γ ⊢ real Γ ⊢ α

t(α1, . . . , αn) ∈ Γ ∀i ≤ n,Γ ⊢ τi

Γ ⊢ t(τ1, . . . τn)

Figure 2.4: Typing rules for types

Γ ⊢ τ

Γ ⊢ xτ : τ

Γ ⊢ τ

Γ ⊢ : τ

Γ ⊢ p1 : τ Γ ⊢ p2 : τ fv(p1) = fv(p2)

Γ ⊢ (p1 | p2) : τ
Γ ⊢ p : τ xτ /∈ fv(p)

Γ ⊢ p as xτ : τ

f(α1, . . . , αm)(τ ′1, . . . τ
′
n) : τ ∈ Γ ∀i ≤ m,Γ ⊢ τi Γ ⊢ τ σ = {α1 → τ1, . . . , αm → τm}

∀i, j ≤ n, i ̸= j =⇒ fv(pi) ∩ fv(pj) = ∅ ∀i ≤ n,Γ ⊢ pi : σ(τ
′
i) ∃a, a ∈ Γ ∧ADT (a) ∧ constr(f, a)

Γ ⊢ f(τ1, . . . , τm)(p1, . . . , pn) : σ(τ)

Figure 2.5: Typing rules for patterns

Γ ⊢ cint : int Γ ⊢ creal : real

Γ ⊢ τ

Γ ⊢ xτ : τ

f(α1, . . . , αm)(τ ′1, . . . τ
′
n) : τ ∈ Γ ∀i ≤ m,Γ ⊢ τi Γ ⊢ τ σ = {α1 → τ1, . . . , αm → τm}

∀i ≤ n,Γ ⊢ ti : σ(τ
′
i)

Γ ⊢ f(τ1, . . . , τm)(t1, . . . , tn) : σ(τ)

Γ ⊢ t1 : τ Γ ⊢ t2 : τ2

Γ ⊢ let xτ := t1 in t2 : τ2

Γ ⊢ f Γ ⊢ t1 : τ Γ ⊢ t2 : τ

Γ ⊢ if f then t1 else t2 : τ

Γ ⊢ f Γ ⊢ τ

Γ ⊢ ϵxτ , f : τ

Γ ⊢ t : τ1 ∀i ≤ n,Γ ⊢ pi : τ1 ∀i ≤ n,Γ ⊢ ti : τ2 exhaustive(t, p1, . . . , pn)

Γ ⊢match t with | p1 → t1 | . . . | pn → tn end : τ2

Figure 2.6: Typing rules for terms

Γ ⊢ ⊤ Γ ⊢ ⊥
Γ ⊢ f1 Γ ⊢ f2 ◦ ∈ {∧,∨, =⇒ , ⇐⇒ }

Γ ⊢ f1 ◦ f2
Γ ⊢ t1 : τ Γ ⊢ t2 : τ

Γ ⊢ t1 = t2

p(α1, . . . , αm)(τ ′1, . . . τ
′
n) ∈ Γ ∀i ≤ m,Γ ⊢ τi σ = {α1 → τ1, . . . , αm → τm} ∀i ≤ n,Γ ⊢ ti : σ(τ

′
i)

Γ ⊢ p(τ1, . . . , τm)(t1, . . . , tn)

Γ ⊢ τ Γ ⊢ f q ∈ {∀,∃}
Γ ⊢ q xτ , f

Γ ⊢ f

Γ ⊢ ¬f
Γ ⊢ t : τ Γ ⊢ f

Γ ⊢ let xτ := t in f

Γ ⊢ f1 Γ ⊢ f2 Γ ⊢ f3

Γ ⊢ if f1 then f2 else f3

Γ ⊢ t : τ ∀i ≤ n,Γ ⊢ pi : τ ∀i ≤ n,Γ ⊢ fi exhaustive(t, p1, . . . , pn)

Γ ⊢match t with | p1 → f1 | . . . | pn → fn end

Figure 2.7: Typing rules for formulas
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l e t rec c h e c k t s t s s t s =
(∗ r e c u r s i v e data type , abandon ∗)
i f Sts .mem t s t s s then f a l s e e l s e
l e t c l = f i n d c o n s t r u c t o r s kn t s i n
c l != [ ] &&
(∗ an a l g e b r a i c type i s i n h a b i t e d i f f

we can b u i l d a v a l u e o f t h i s t ype ∗)
L i s t . e x i s t s ( c h e c k c o n s t r ( S t s . add t s t s s ) ) c l

and c h e c k c o n s t r t s s ( l s , ) =
(∗ we can c o n s t r u c t a v a l u e i f f e v e r y

argument i s o f an i n h a b i t e d type ∗)
L i s t . f o r a l l ( c h e ck t ype t s s ) l s . l s a r g s

and che ck t ype t s s t y = match t y . t y node with
| t s ( t l ) −>

L i s t . f o r a l l ( c h e ck t ype t l ) &&
ch e c k t s t s s t v s t s

| −> t r u e

Figure 2.8: Algorithm for determining if ADTs are inhabited

must belong to a special grammar and be strictly positive. These checks can be nontrivial

to describe and formalize, but they will be crucial in allowing us to define the semantics

appropriately in Chapter 3 – at key points throughout our formalization we will rely on

these typing conditions to prove in Coq that the structures we want to define indeed exist.

2.2.1 Algebraic Data Types and Pattern Matching

The well-formedness assumptions for ADTs include the requirement that the constructors all

have the same parameters and the correct return type. We also include metadata indicating

whether a function is a constructor and if so, how many other constructors are in its type;

we require that this information is consistent with the context. Why3 includes a check for

strict positivity; we do not include this because we do not yet include function types (§7.1).

The final check is to ensure that all data types are inhabited by searching for a constructor

whose arguments are provably inhabited.

Figure 2.8 shows an OCaml-like pseudocode version of the algorithm for checking that

ADTs are inhabited that we implement and verify. The algorithm works by checking each
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type symbol (for instance, list). To do this, it ensures that the type symbol is not in the

process of being checked already (without this, type foo = | a of foo would be considered

inhabited). It then gets the constructors for the type and searches for a constructor whose

types all exist, according to the check check type. This check considers all primitive types

and variables inhabited; for every type symbol application, it checks both that the type

symbol is inhabited (adding the original type symbol to the set of in-process-symbols) and

that all arguments are inhabited. This is slightly more restrictive than Why3’s check; Why3

does not assume all type variables are inhabited, but rather keeps track of which variables

correspond to types not known to be inhabited.

This function is quite difficult to reason about effectively. The primary complication

arises from the highly non-structural nature of the recursion: in the course of checking a

type symbol, we could end up checking any other type symbol that occurs (transitively) in

the arguments of a constructor for this symbol. Thus, there is no obvious way to convince

Coq that this function terminates. Instead, we use the common technique of fuel – we add

an additional nat-valued input to the function, and the call to check ts in check type occurs

with a smaller fuel value. If the fuel ever reaches zero, the function terminates and returns

false. Since each type symbol in the context will be checked at most once, our fuel bound is

the number of type symbols in the context. Such a fuel parameter is also useful for induction

as the theorems must reason about the entire context at once.

Pattern matching is required to be exhaustive. The check that Why3 (and P-FOLDR)

uses is based on the compilation of pattern matches to simple patterns (patterns consisting of

a constructor applied to variables or a wildcard). We defer the explanation of this algorithm

and the exhaustiveness check to Chapter 4.

2.2.2 Recursive Functions and Termination Checking

For declared functions and predicates f(α1, . . . , αn)(xτ1 , . . . , xτm) : τ = b to be well-typed,

their bodies must be well-typed, the free variables of b must belong to {xτ1 , . . . , xτm}, and
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the type variables of b must belong to α1, . . . , αn. Additionally, non-recursive definitions

cannot include the declared function or predicate symbol in their body. Recursive functions

must be terminating; accordingly, Why3 includes a termination checker based on structural

inclusion of algebraic data types (for example, t is smaller than x :: t). P-FOLDR (and our

Coq formalization) includes a version of such a termination checker, based in part on the

Why3 and Coq termination checkers, but different from each. Here, we detail the differences

and discuss our implementation.

Our termination checker starts by determining, for a given pattern match, the set of

smaller variables – those that appear (transitively) in constructor patterns. We call this

function pat constr vars. Crucially, this transitivity requires all intermediate variables to be

of the same mutual type – in other words, we do not allow the following, since list and tree

are different mutual types:

type l i s t ’ a = | N i l | Cons ’ a ( l i s t a )
type t r e e ’ a = | Lea f ’ a | Node ( l i s t ( t r e e ’ a ) )
funct ion s i z e ( t : t r e e ’ a ) : i n t =

match t with
| Lea f x → x
| Node N i l → 0
| Node ( Cons x t l ) → s i z e x
end

As we will see, our formalization does not support such “nested” ADTs at all, though this

can always be encoded using mutual recursion, which we do support.

Then, we define a termination test that checks if the function/predicate bodies in a mu-

tually recursive block are decreasing on a given set of indices. We show the most interesting

rules in Figure 2.9. The function is parameterized by the mutual block containing func-

tions fs and predicates ps, as well as the claimed decreasing indices for each such function

(dec idx(f)). It then determines if a function body b decreases with known-smaller-variable

set s and a singleton-or-empty set h representing the original variable ((s, h) ⇓ b). When

evaluating a function call, if the function is in the mutual block, it checks that the argument

at the claimed decreasing index is a variable in s (rule dec fun in). The trickiest parts are
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f ∈ fs tdec idx(f) = xτ ′ uniform(τ ) xτ ′ ∈ s ∀t ∈ t, (s, h) ⇓ t

(s, h) ⇓ f(τ )(t)
Dec fun in

f /∈ fs ∀t ∈ t, (s, h) ⇓ t

(s, h) ⇓ f(τ )(t)
Dec fun notin

var case(h, s, xτ ) ∀(p, t) ∈ ps, (pat constr vars p ∪ (s \ fv(p)), h \ fv(p)) ⇓ t

(s, h) ⇓match xτ with ps end
Dec match var

∀ps′, t, (c(ps′), t) ∈ ps→
 ⋃

i≤|ps′|
var case(s,h,ti)

(pat constr vars ps′i)

 ∪ (s \ fv(c(ps′))), h \ fv(c(ps′))

 ⇓ t

∀(p, t) ∈ ps, p ̸= c(ps′)→ (s \ fv(p), h \ fv(p)) ⇓ t

(s, h) ⇓match c(t) with ps end
Dec match constr

(t = xτ → ¬var case(h, s, xτ )) t ̸= c(t) ∀(p, t) ∈ ps, (s \ fv(p), h \ fv(p)) ⇓ t

(s, h) ⇓match t with ps end
Dec match rec

Figure 2.9: Termination checking rules for function application and pattern matching

for pattern matches:

1. If the match occurs on a variable in s or h (a condition we call var case), we check that

each branch in the match terminates after removing the pattern’s free variables from

s and h and then adding pat constr vars to s (dec match var).

2. If the match occurs on a constructor application c(t), we check that each branch in

the match terminates under the following condition (dec match constr):

• If the pattern is c(ps′), we add to s all pat constr vars from the inner patterns

corresponding to smaller elements (according to var case) of t (as before, after

removing the pattern free variables).1

• Otherwise, we simply remove the pattern free variables from s and h.

There are also simpler recursive cases for matches (dec match rec) and function appli-

1Why3 implements simultaneous pattern matching by matching on tuples (see §4.2.3 for more details).
Thus, this case lets us show termination when recursive functions are defined by matching on multiple
arguments (e.g. zip for lists).
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cations (dec fun notin) that do not fall into one of the above categories. The remaining

cases are straightforward, removing any bound variables from s and h before recursion. We

require that all recursive function bodies satisfy this termination check with an initially

empty s and with h containing the claimed decreasing variable. We then check that the

arguments at all claimed indices have consistent types – all must belong to a single mutual

ADT. Finally, we search over all possible index sets to find one that satisfies these conditions,

if one exists. This last step takes potentially exponential time (though we use some heuris-

tics, first filtering by argument types, to make it fast in practice); both Coq and Why3’s

termination checkers are worst-case exponential as well.

Termination Checking in P-FOLDR, Coq, and Why3 Our termination checker dif-

fers from those of Coq and Why3. Coq’s termination checker is based on strictly decreasing

subterms, where the subterm relation for a particular mutually recursive type is defined

when the type is declared. Our checker is essentially a simpler version of Coq’s termination

checker, omitting facilities for nested recursion and dependent types. Furthermore, since

P-FOLDR distinguishes between terms and propositions (unlike Coq) and only allows re-

cursion on terms, it cannot express general well-founded recursion.2 Why3’s termination

checker is quite different than ours:

1. Rather than using simple structural inclusion, it allows a lexicographic ordering of

arguments that are structurally decreasing.

2. It does not rely on strict subterms of a single mutual ADT; instead, it is context-free

and requires no knowledge of ADTs.

3. In some sense, it is lazy – it finds all paths in the call graph involving a recursive call

and checks these rather than checking every function individually.

Adding lexicographic termination to our typechecker would be possible. Ultimately, we

2Why3 does allow well-founded recursion in WhyML; one proves that their relation is well-founded and
then is allowed to use it as an explicit termination metric (variant) for a WhyML function or lemma. Since
we do not model WhyML, we do not prove anything about this.
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will prove (see §3.2.4) that, semantically, the notion of “smaller” variables is well-founded

in Coq. Using a lexicographic ordering would make the relation more complex but poses no

significant theoretical obstacles. The latter two differences are more problematic. Why3’s

context-free termination checker merely checks that the variables being recursed on appear

guarded by some constructor, regardless of the type. Thus, Why3 can prove the function

size at the beginning of the section terminating. In Coq, allowing such definitions would lead

to a contradiction due to impredicativity:

Induct ive Foo : Prop := | f oo : (∀ A : Prop , A→ A) → Foo .
Fixpo int oops ( x : Foo ) : F a l s e :=

match x with f oo f ⇒ oops ( f Foo ( foo f ) ) end .

However, neither the Why3 tool nor P-FOLDR can define oops, since one cannot write

functions over inductive predicates (unlike in Coq, there is a sharp distinction between types

and propositions).3 This is a very subtle point; no previous published work identified that

the soundness of the termination checker in Why3 relies on the inability to define functions

over inductive predicates.4 We note that a context-free termination checker would be difficult

to reason about; our correctness theorem (§3.2.4) relies on induction over particular mutual

ADTs, while a context-free version would require simultaneous induction over all defined

ADTs.

Finally, the existing Why3 typechecker’s laziness means that we can write other types of

functions that do not pass Coq’s termination checker:

funct ion a ( x : l i s t i n t ) ( y : l i s t i n t ) : l i s t i n t = b x y
with b ( p : l i s t i n t ) ( q : l i s t i n t ) : l i s t i n t =

match q with
| Cons q qs → a p qs
| N i l → N i l
end

This is a particularly interesting example: a is decreasing on the second argument, but this is

only evident when the calls are composed (resulting in a recursive call a p qs). Neither Coq’s

3The Why3 tool automatically converts between booleans and propositions in some cases; it is possible
to define something close to Foo but not oops.

4Though other consistency issues requiring restrictions on inductive predicates are known: https://

gitlab.inria.fr/why3/why3/-/issues/546.
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f0 := p(α1, . . . , αn)(t) | f =⇒ f0 | ∀xτ , f0 | let xτ := t in f0

Figure 2.10: Grammar for inductive predicates

nor our termination checker can see this, as a does not decrease by itself. Such behavior

would also be difficult to reason about, as this requires explicit description of mutually

recursive function call graphs.

2.2.3 Inductive Predicates

Inductive predicates are significantly simpler. First, they have a special syntactic form:

given a predicate p(α1, . . . , αn)(τ1, . . . τm) with constructors f1, . . . , fn, each clause fi must

be closed and belong to the grammar of Figure 2.10 (which depends on p). Additionally, all

predicates from the mutually recursive block must occur only in strictly positive positions

in the constructors. Both conditions are quite straightforward to check.

2.2.4 Typechecking

Now we define well-typing of entire contexts (valid context Γ). In addition to requiring that

each definition satisfies the above checks, we need to ensure that each function, predicate,

and type symbol is defined only once. Finally, we require that the context is inductively

well-typed: each definition is well-typed with respect to only the context defined before

it. This ensures that each definition only uses previously defined symbols, and allows us to

iteratively construct our models of well-typed contexts by adding each definition in sequence.

However, it introduces complications when proving that context-modifying transformations

are well-typed: we must prove both that all definitions are well-typed and also that the

transformation preserves well-ordering.

With the full type system defined, we write a verified typechecker for types, patterns,

terms, formulas, definitions, and contexts; this lets us typecheck concrete P-FOLDR contexts
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(useful in our proof system in §3.4.2) and prove some useful corollaries, such as the fact that

terms are uniquely well-typed.5

2.3 Semantics

In this section, we describe a Tarski-style semantics for P-FOLDR, which is based on inter-

preting terms as objects in a model. In Chapter 3, we will explicitly construct such a model

in Coq.

Interpretations and Valuations In order to represent a term or formula containing type,

function, or predicate symbols, as well as free type or term variables, we need to first define

interpretations of these objects. A sort is a monomorphic type (e.g., list int is a sort, list ’a

is not). A pre-interpretation assigns a meaning to all sorts and all function and predicate

symbols. Each sort is assigned a nonempty domain (in Coq, a Set) JsKτ such that int is

interpreted as Z and real is interpreted as R.

Next, we need to assign an interpretation for function and predicate symbols. Polymor-

phism makes this trickier: for function symbol f(α)(τ1, . . . , τn) : τ and a list of sorts s, we

want the interpretation of f(s) to be a function Jf(s)Kλ of type Jσ(τ1)Kτ × . . . × Jσ(τn)Kτ →

Jσ(τ)Kτ , where σ is the map that sends each α in α to the corresponding s in s. Predicate

symbols are similar, but return a bool.

Finally, we require that the interpretations for ADTs satisfy several properties. For ADT

a in mutual block m and sorts s we must have that:

1. Constructors are injective: for any constructor c of a, if Jc(s)Kλ(t1) = Jc(s)Kλ(t2), then

t1 = t2.

2. Constructors are disjoint: for any constructors c1 and c2 of a, if Jc1(s)Kλ(t1) = Jc2(s)Kλ(t2),

then c1 = c2.

5This system has no type inference, and some intermediate terms and formulas are annotated with types
(e.g. for the formula t1 = t2, we need to know the type of t1 and t2).
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3. There is a function find(x) that, given x of type Ja(s)Kτ , returns constructor c of a

and arguments t1 such that x = Jc(s)Kλ(t1).

4. All ADTs in m must be inductive; represented by the following generalized induction

principle: Let P be a property of any ADT a in m and any instance of Ja(s)Kτ .6 The

following holds:

(∀a ∈ m, c ∈ constrs(a), t,

(∀t ∈ t, a′ ∈ m, t ∈ Ja′(s)Kτ → P a′ t)→

P a
(
Jc(s)Kλ(t)

)
)→

∀a ∈ m,x ∈ Ja(s)Kτ , P a x

The induction principle can be read as follows: suppose that for all ADTs a of m, all

constructors c of a, and all t, when P holds of all components of t that have ADT type for

any ADT a′ in m, then P holds of Jc(s)Kλ(t). Then, for any a in m and x in Ja(s)Kτ , P holds

of x. This generalizes the usual induction principles on lists and trees.

These conditions differ from Filliâtre’s in two ways. For the third property, we require that

the find function is constructive; mere existence is not sufficient. More importantly, Filliâtre

correctly describes ADT representations as the free algebra generated by the constructors,

but gives an incomplete set of conditions by omitting an induction principle. This is not

obviously a problem in the pen-and-paper semantics, but induction will be critical in proving

the well-foundedness of recursive function models in Coq.

With this pre-interpretation, we can define a valuation, which describes the meaning

of free type and term variables in a term or formula. A type variable valuation vt maps

each type variable to a sort. We can easily extend this to map arbitrary types to sorts by

replacing all type variables. Then, a term variable valuation maps each variable xτ to an

element of Jvt(τ)Kτ . Informally, we will refer to both valuations as v, and in most cases, the

6In Coq, P has type ∀a, a ∈ m→ Ja(s)Kτ → Prop.
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Jcint, realKtv = c
JxτKtv = v(xτ )

Jf(τ1, . . . , τm)(t1, . . . , tn)Ktv = Jf(v(τ1), . . . , v(τm))Kλ(Jt1Ktv, . . . , JtnKtv)
Jlet xτ := t1 in t2Ktv = Jt2Ktv[xτ→Jt1Ktv ]

Jif f then t1 else t2Ktv = if JfKfv then Jt1Ktv else Jt2Ktv
Jϵxτ , fKtv = ϵ(λy → JfKfv[xτ→y])

Jp(τ1, . . . , τm)(t1, . . . , tn)Ktv = Jp(v(τ1), . . . , v(τm))Kλ(Jt1Ktv, . . . , JtnKtv)
J⊤Kfv = true
J⊥Kfv = false

J∀xτ , fKfv = ∀d, JfKfv[xτ→d]

J∃xτ , fKfv = ∃d, JfKfv[xτ→d]

Jt1 = t2Kfv = Jt1Ktv = Jt2Ktv
Jf1 ◦ f2Kfv = Jf1Kfv ◦ Jf2Kfv , ◦ ∈ {∧,∨,⇒,⇔}

J¬fKfv = ¬JfKfv
Jlet xτ := t in fKfv = JfKfv[xτ→JtKtv ]

Jif f1 then f2 else f3Kfv = if Jf1Kfv then Jf2Kfv else Jf3Kfv

Figure 2.11: Semantics of terms and formulas without pattern matching

type valuation is fixed.

Semantics for Terms and Formulas Figure 2.11 defines the semantics of (well-typed)

terms (JtKtv ∈ Jv(τ)Kτ if t has type τ) and formulas (JfKfv ∈ bool), for now omitting pattern

matching. Almost all cases directly map the Why3 logical construct to the corresponding

meta-logic (eventually, Coq) construct; the exception is for variable binding, which extends

the valuation (v[x→ y] denotes a valuation v′ identical to v except that x is sent to y).

Pattern Matching Semantics Filliâtre interprets patterns by compiling them into ele-

mentary tests. In particular, posited functions isf and projfi denote whether a term is an

instance of constructor f and get the ith argument of such an application, respectively. In-

terpreting a pattern match is treated as compilation, replacing a match with a series of isf,

projfi, and let-bindings. We take an alternate semantics-oriented approach against which we

later prove a more sophisticated version of such a compilation scheme sound (§5.5).

We encode pattern matching by describing how a successful pattern match affects the
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Jxτ , τ, dKp = Some{x→ d}
J , τ, dKp = Some ∅

Jp1 | p2, τ, dKp = if isSomeJp1, τ, dKp then Jp1, τ, dKp else Jp2, τ, dKp
Jp as xτ , τ, dKp = m1 ← Jp, τ, dKp; return (m1 ∪ {x→ d})

Jc(ps), τ, dKp = if τ = a(vs) for ADT a
then let (c1, a1) = find(d) in

if c = c1 then Jps, tys, a1KR else None
else None

J[], [], []KR = Some ∅
Jp :: ps, τ :: tys, d :: dsKR = m1 ← Jp, τ, dKp;m2 ← Jps, tys, dsKR; return (m1 ∪m2)

Figure 2.12: Definition of Jp, τ, dKp – matching element d against pattern p of type τ

variable valuation v by adding new bindings for the variables bound in the pattern. To that

end, we define the interpretation of a single match of pattern p of type τ against element d of

type Jv(τ)Kτ ; we denote this as Jp, τ, dKp. This interpretation produces a map of new variable

bindings if the match succeeds; the definition is shown in Figure 2.12. The function works as

we might expect: variables are always matched and bound to the matchee, wildcards always

match but do not bind anything, disjunctions attempt to match the first pattern, then the

second, and as-patterns match the pattern and add an additional variable binding. The

constructor case is the most interesting: we first check if the type is an ADT; if so, we can

call find to retrieve the constructor and arguments a1 that produce d. If the constructors

match, then we recursively check the arguments in a1 against the corresponding patterns

in ps (using the row matching Jps, tys, dsKR). If all matches succeed, we join the resulting

maps (by typing, there are no free variables in common, so the maps have no overlap). The

type τ is only needed to determine if the value d is an ADT; subsequently, we will not write

the τ argument.

With this, the function that interprets pattern matches (Jt, psKpsv , Figure 2.13) is simple:

under a term variable valuation v, given a term t to match on and a list of pattern-term (or

formula) pairs, iterate through the pattern list until a single pattern matches, then interpret
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orep v a o1 o2 = match o1 with | Some m→ Some JaKm∪v| None→ o2 end

Jt, []Kpsv = default

Jt, (p, t1) :: psKpsv = orep v t1 Jp, JtKtvK
p Jt, psKpsv

Figure 2.13: Definition of pattern match semantics

the corresponding term under the valuation extended with the newly bound variables (note

that the union operator prioritizes bindings in the first map). If no such pattern is found, the

interpretation function returns a default value.7 Then we extend the interpretations of terms

and formulas with pattern matching (we show the term case; the formula case is similar):

Jmatch t with ps endKtv = Jt, psKpsv

Recursive Functions and Inductive Predicates An interpretation (or a full interpre-

tation in our Coq development) is a pre-interpretation that is consistent with the defined

recursive functions/predicates and inductive predicates.

The specification for (mutually) recursive functions and predicates over ADTs is simple:

for an interpretation to be consistent with f(α1, . . . , αm)(x1, . . . , xn) = b, it must be the case

that Jf(s)Kλ(a) = JbKtv for any sorts s and arguments a, where v maps α to s and x to a

(the predicate case is similar).

Meanwhile, for inductive predicate p(α1, . . . , αk)(τ1, . . . , τm) = | f1 | . . . | fn and

sorts s, it must the case that Jp(s)Kλ is the least predicate such that Jf1Kfv , . . . , JfnKfv hold,

where v maps α → s. This means that Jp(s)Kλ satisfies the two properties that define the

least predicate: under this interpretation, all JfiKfv should hold and for any other predicate

q that satisfies the constructors, for any arguments a, Jp(s)Kλ(a)→ q(s)(a).

Validity, Tasks, and Transformations Then we define the standard logical notions: a

closed formula f is satisfied by a full interpretation (I ⊨ f) if for any possible valuation,

7All types are inhabited, so this is well-defined. In any case, we prove that exhaustiveness ensures that
such a default value will never be reached.
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JfKfv holds (note that the context Γ is implicit). For a set ∆, we denote I ⊨ ∆ to mean that

I ⊨ d for all d ∈ ∆. A formula is valid (⊨ f) if every full interpretation satisfies it, and a

set of formulas ∆ logically imply f (∆ ⊨ f) if, for any full interpretation I, whenever I ⊨ ∆,

I ⊨ f . We will frequently show the context explicitly for logical implication (Γ,∆ ⊨ f).

Why3 proof tasks and transformations are the crucial ingredients in our verified compiler.

A task consists of a context Γ, a set of local assumptions ∆, and a goal f ; a task is well-typed

if Γ is a well-typed context, ∆ consists of closed, well-typed formulas, and f is a closed,

well-typed formula. A task is valid if Γ,∆ ⊨ f . Recall that Why3 translates tasks to simpler

logics by applying a series of transformations, functions that take a proof task and produce

some new tasks. A transformation T is sound if, whenever task t is well-typed, if all the

output tasks T (t) are valid, then so was t. This captures the notion that if we transform

task t to tasks t1, . . . , tn, it suffices to prove these output goals.
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Chapter 3

Why3Sem: Formalizing P-FOLDR in

Coq

In this chapter, we present Why3Sem, a formalization of P-FOLDR in Coq. P-FOLDR

occupies a middle ground between two types of logics most commonly formalized in proof

assistants: First-Order Logic (FOL) and dependent type systems that implement higher-

order logics such as the Calculus of Inductive Constructions (CIC), the type theory imple-

mented by Coq.1 P-FOLDR is clearly a strict extension of FOL (which has neither recursion

nor polymorphism), and, while its functional programming features are inspired by logics

like CIC, it differs in several crucial respects. First, it enforces clear distinctions between

types and terms as well as between terms and formulas. For instance, ADTs and inductive

predicates are completely separate, where in Coq, both are instances of general inductive

types. Similarly, since everything is first-order, quantifiers and other binders only bind term

variables (and not formulas), and there is no explicit quantification over types. Another

crucial difference lies in semantics: while CIC is a programming language whose semantics

can be expressed operationally as reduction rules (as in MetaCoq [102]), P-FOLDR is not

1Other proof assistants (e.g. Isabelle/HOL, HOL Light, etc) implement higher-order logic without depen-
dent types. In such systems, packages compile recursive types and definitions to more primitive structures
(e.g. [64]). Since P-FOLDR extends FOL with built-in recursive structures, we restrict our comparison to
FOL and dependent type systems.
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a programming language and has no built-in notion of evaluation. Indeed, it does not even

contain lambda terms as first-class values (in Why3, these are encoded using the ϵ oper-

ator). Instead, as we saw in Chapter 2, its semantics can be defined denotationally, via

interpretations (models).

However, it is unclear that the semantics in Chapter 2 are well-defined. That is, how

do we know that there exist interpretations satisfying e.g. the ADT conditions of §2.3? If

not, there are no models and thus the logic becomes useless: every formula is valid. To

rule out such pathological behavior, we construct an explicit model of P-FOLDR in Coq,

interpreting terms and formulas as objects in Coq’s logic and showing that we can always

construct interpretations consistent with well-typed definitions. This approach is common

for formalizing and proving properties of FOL [51] and is similar to forms of logical relations

used to formalize Martin-Löf type theory [4], but none of these account for recursive types,

functions, and predicates. As we will see, constructing such a model is difficult, and relies

crucially on P-FOLDR’s typing rules. In the end, we give an explicit construction of a

model for any well-typed set of definitions. This can be viewed as a type soundness result;

rather than show that well-typed terms always reduce to values (as in CIC), we show that

well-typed contexts have models.

3.1 Polymorphic First-Order Logic

We first briefly discuss our formalization of pre-interpretations (without ADTs), valuations,

and the semantics of terms and formulas. Most follow the pen-and-paper description of

Chapter 2 closely; we focus on formalization-specific aspects.

We encode the definition of type pre-interpretations (J·Kτ – for now without ADTs) as

pi dom in Coq:
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Induct ive base := | b i n t | bboo l .
Def in i t i on b a s e t o t y ( b : base ) : Type :=

match b with | b i n t ⇒ Z | bboo l ⇒ boo l end .
Def in i t i on example : h l i s t b a s e t o t y [ b i n t ; bboo l ; b i n t ] := HL cons 1

( HL cons f a l s e ( HL cons 3 HL n i l ) ) .

Figure 3.1: Example use of heterogeneous lists

Def in i t i on domain ( domain aux : s o r t → Set ) ( s : s o r t ) : Set :=
match s o r t t o t y s with
| v t y i n t ⇒ Z
| v t y r e a l ⇒ R
| ⇒ domain aux s

end .

Record pi dom := {
dom aux : s o r t → Set ;
domain ne : ∀ s , domain nonempty ( domain dom aux ) s ; }

We denote domain (dom aux pd) s as domain pd s for readability.2 Function and predicate

pre-interpretations (J·Kλ) are trickier, as the function argument types may differ. From §2.3,

we know that if we have a function foo with e.g. int and list real arguments that returns

an int, the interpretation must be a Coq function of type JintKτ × Jlist realKτ → JintKτ . To

encode this generically, we use heterogeneous lists, a dependently typed data structure in

which, given f: A → Type and l: list A, the ith element has type f (nth i l) (for a more

detailed presentation of heterogeneous lists, see [34]). We can define this as follows:

Induct ive h l i s t {A: Type} ( f : A→ Type ) : l i s t A→ Type :=
| HL n i l : h l i s t f n i l
| HL cons : ∀ x t l , f x → h l i s t f t l → h l i s t f ( x : : t l ) .

Figure 3.1 shows an example of a 3-element hlist where the first and last elements are

integers and the middle is a boolean. This simple example can be implemented with a tuple,

but if the length is not known statically (as in our semantics), we need an hlist. We provide

a generic library for hlists and various operations (inversion, length, indexing, filtering, etc)

that we use in numerous parts of Why3Sem.

2One may wonder why pi dom does not simply require dom aux vty int = Z. Making this equality defini-
tional rather than propositional results in fewer type casts in proofs.
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With hlists, we can represent the function and predicate symbol pre-interpretation as

follows, where arg list is an hlist specialized to pre-interpretations and sym sigma args and

sym sigma ret represent the map σ (which maps type variables to the corresponding sort)

acting on the function arguments and return type, respectively:

Record p i f u n p r e d ( pd : pi dom ) := {
f un s : ∀ ( f : funsym ) ( s r t s : l i s t s o r t ) ,

a r g l i s t ( domain pd ) ( s ym s igma a rg s f s r t s ) →
domain pd ( f un s ym s i gma r e t f s r t s ) ;

p r ed s : ∀ ( p : predsym ) ( s r t s : l i s t s o r t ) ,
a r g l i s t ( domain pd ) ( s ym s igma a rg s p s r t s ) → boo l ; }

We separate type and term variable valuations. First, a type variable valuation vt maps

each type variable to a sort – v subst extends this to map arbitrary types to sorts by replacing

all type variables. With an abuse of notation, we will denote v subst vt ty as vt(ty). Then

we define term variable valuations:

Def in i t i on v a l t y p e v a r := t yp e v a r → s o r t .
Def in i t i on v s u b s t ( v : t y p e v a r → s o r t ) ( t : v t y ) : s o r t := . . .
Def in i t i on v a l v a r s ( pd : pi dom ) ( v t : v a l t y p e v a r ) :=
∀ ( x : vsymbol ) , domain pd ( v s u b s t v t ( snd x ) ) .

We can now define mutually recursive Coq functions term rep and formula rep that implement

J·Ktv and J·Kfv (§2.3) – that is, they give the meaning of a (well-typed) Why3 term or formula

under context Γ, pre-interpretation (pd, pf), and type variable valuation vt:

Fixpo int t e rm rep : ∀ ( v : v a l v a r s pd v t ) ( t : term ) ( ty : v t y )
( Hty : t e rm ha s t yp e Γ t t y ) , domain ( v s u b s t v t t y )

with f o rmu l a r e p : ∀ ( v : v a l v a r s pd v t ) ( f : f o rmu la )
( Hty : f o rmu l a t yp ed Γ f ) , boo l

Restricting our input to well-typed terms and formulas is crucial; we need the typing proofs

for several typecasts in the functions. For example, if the variable xτ1 has type τ2, we know

by typing that τ1 = τ2. However, adding the typing proof necessitates dependent pattern

matching; to help with this, we use Coq’s Equations [103] package. Almost all term rep

and formula rep cases follow the definition in Figure 2.11 very closely; each operator in the

meta-logic is the corresponding Coq one. We encode ϵ using Coq’s indefinite description

axiom and ClassicalEpsilon library. The exceptions are function/predicate application and
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pattern matching, which take more work.

Function and Predicate Application Recall that function application has the following

interpretation (the predicate case is similar):

Jf(τ1, . . . , τm)(t1, . . . , tn)Ktv = Jf(vt(τ1), . . . , vt(τm))Kλ(Jt1Ktv, . . . , JtnKtv)

Encoding this in Coq is more challenging than it appears. Jt1Ktv, . . . , JtnKtv hides a large

amount of complexity: it represents the result of calling term rep recursively on a list of

terms to construct an hlist of the appropriate type. This necessitates a nested fixpoint or

separate recursive function, which we implement as fun arg list, with the type:

Def in i t i on f u n a r g l i s t { t y : v t y } ( v t : v a l t y p e v a r ) ( f : funsym )
( vs : l i s t v t y ) ( t s : l i s t term )
( r e p s : ∀ t ty , t e rm ha s t yp e Γ t t y →domain pd ( v s u b s t v t t y ) )
( Hty : t e rm ha s t yp e Γ ( Tfun f vs t s ) t y ) :

a r g l i s t ( domain pd ) ( s ym s igma a rg s f (map ( v s u b s t v t ) vs ) ) .

Conceptually, this function is fairly simple: it calls the function reps on each element of ts,

bundling the results into an hlist. Since reps is instantiated with term rep (recursively), this

function must additionally be written in such a way that Coq can tell that all calls to reps

occur on elements of ts, which are structurally smaller than the original input to term rep.

This is not hard to do using tactics; in fact, we define a more general function of which

fun arg list and pred arg list are special cases.

But this alone doesn’t quite work: the types are not correct. In particular, given func-

tion symbol f with parameters α and argument types t applied to types τ and arguments x,

the typing rules dictate that argument xi must have type σ(ti), where σ sends α → τ .

Thus, JxiKtv has type vt(σ(ti)). However, in order to apply the function interpretation

Jf(vt(τ1), . . . , vt(τm))Kλ, we need JxiKtv to have type σ′(ti), where σ′ sends α to vt(τ ). There-

fore, we must prove that σ and vt commute as type substitutions. This is not obvious, as

the two substitutions are defined very differently: σ sends a small set of variables to specific

types, while vt maps every variable to a sort. Nevertheless, the following lemma allows us
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to cast the types in fun arg list when adding each element to the hlist:

Lemma 3.1.1 (funsym subst eq). Define σa,b(τ) as the map that replaces each type variable

a ∈ a in τ with the corresponding type b ∈ b.

Let α be a unique list of type variables, let τ be a list of types of the same length, and let

v be a type variable valuation (e.g. a map from type variables to sorts). Then for any type

τ1, v(σα,τ (τ1)) = σα,v(τ )(τ1).

We note that the pen-and-paper description of Why3’s logic omits this subtlety; this is

another place where our formalization discovers small gaps in the informal semantics.

3.2 Semantics for Recursive Structures

So far, we have formalized a classical polymorphic first-order logic, similar to that mechanized

by Parthasarathy et al [91] for Boogie expressions. The real complexity comes from adding

recursive structures — types, functions, and predicates. These structures are fundamentally

higher-order; we cannot completely axiomatize them in first-order logic and therefore we

need the additional power of a stronger logic like Coq or ZFC to define our semantics.

In Chapter 2 and in Filliâtre’s original pen-and-paper description, these features impose

additional conditions on the interpretation (for instance, that the interpretation of an ADT’s

constructor must be injective, and so on). But this approach has two problems for our

purposes. First, if the conditions are contradictory or the typing rules are not strong enough,

these conditions might be unsatisfiable and then the logic becomes useless (every formula

is valid). Second, we cannot tell if these conditions are sufficient. As we discussed in §2.3,

Filliâtre’s original presentation omits an induction principle, which we need in order to define

models of recursive functions over ADTs and to prove Why3 goals that require induction.

Instead, we take a different approach: we consider the conditions on interpretations of

Chapter 2 as a specification that our encoding of these structures must satisfy. Then, we

construct objects in Coq satisfying these conditions and thus prove that, under the typing
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Theorem c o n s t r r e p d i s j o i n t : ∀ { f 1 f 2 : funsym}
{ f 1 i n : c o n s t r i n a d t f 1 t } { f 2 i n : c o n s t r i n a d t f 2 t }
( a1 : a r g l i s t ( domain pd ) ( s ym s igma a rg s f 1 s r t s ) )
( a2 : a r g l i s t ( domain pd ) ( s ym s igma a rg s f 2 s r t s ) ) ,
f 1 ̸= f 2 →
c o n s t r r e p f1 f 1 i n dom adts a1 ̸=
c o n s t r r e p f2 f 2 i n dom adts a2 .

Theorem c o n s t r r e p i n j : ∀ { f : funsym} { f i n : c o n s t r i n a d t f t }
( a1 a2 : a r g l i s t domain ( sym s igma a rg s f s r t s ) ) ,
c o n s t r r e p f f i n dom adts a1 = c o n s t r r e p f f i n dom adts a2 →
a1 = a2 .

Def in i t i on f i n d c o n s t r r e p ( x : a d t r e p t t i n ) :
{ f : funsym & {Hf : c o n s t r i n a d t f t ∗

a r g l i s t ( domain pd ) ( s ym s igma a rg s f s r t s ) |
x = c o n s t r r e p f ( f s t Hf ) dom adts ( snd Hf ) }} .

Figure 3.2: Specification for ADTs

rules, consistent interpretations exist for any possible assignment to uninterpreted symbols.

In other words, we construct an explicit model of any well-typed P-FOLDR context. In

the following sections, we describe our construction of generic recursive types, recursive

functions, and inductive predicates in Coq, as well as our implementation of generic pattern

matching. We take a highly layered approach, where each construction has 3 parts: the

complex, dependently typed core encoding, a simpler representation layer encapsulating the

core, and the spec, which we prove satisfied by this simpler representation. In later parts of

the semantics and applications, only the spec (i.e. the properties of Chapter 2) is needed;

the core encoding’s complexity is completely hidden from the user.

3.2.1 Algebraic Data Types

Specification We show the Coq versions of the properties required of ADTs (§2.3) in

Figures 3.2 and 3.3. Note that find constr rep is the Coq version of the find function.

As discussed, we will need the (higher-order) induction principle to prove that these ADT

representations are well-founded thereby enabling us to define terminating recursive functions

over them (§3.2.4). In the following, we will construct the needed type (pre-)interpretation
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Theorem a d t r e p i n d m m in s r t s
( Hlen : l e n g t h s r t s = l e n g t h (m params m) )
(P : ∀ t t i n , a d t r e p m s r t s ( dom aux pd ) t t i n → Prop ) :
(∗ For any ADT t i n mutual m, c o n s t r u c t o r c , x = c ( a ) ∗)
(∀ t t i n ( x : a d t r e p m s r t s ( dom aux pd ) t t i n ) ( c : funsym )

(Hc : c o n s t r i n a d t c t )
( a : a r g l i s t ( domain pd ) ( s ym s igma a rg s c s r t s ) )
(Hx : x = c o n s t r r e p . . . c a ) ,
(∗ I f , whenever P ho l d s o f a l l r e c u r s i v e i n s t a n c e s i n a ∗)
(∀ i t ’ t i n ’ H i th r ec , i < l e n g t h ( s a r g s c ) →

P t ’ t i n ’ ( c a s t . . . ( hnth i a s i n t . . . ) ) ) →
(∗Then P ho l d s o f x ∗)
P t t i n x ) →

(∗Then P ho l d s f o r a l l i n s t a n c e s o f t ∗)
∀ t t i n ( x : a d t r e p m s r t s ( dom aux pd ) t t i n ) , P t t i n x .

Figure 3.3: Generalized induction principle for ADTs

for ADTs adt rep and constructor (pre-)interpretation constr rep via an encoding based on

W-types and show how we ultimately prove that such constructions satisfy this specification.

Core Encoding To generate arbitrary algebraic data types (lists, trees, etc) from a syn-

tactic description, we use W-types [81], which provide a generic way to represent a variety

of inductive types. We give a brief description before describing our encoding.

As a running example, we consider a type that represents a binary tree implementing a

map from int to string: data tree = | Leaf | Node of (tree * int * string * tree). In the Node

case, we can give an alternate representation. First, we bundle the non-recursive elements

in a tuple (int * string), and we can represent the recursive ones as the single argument bool

→ tree. This gives an equivalent constructor Node: (int * string) → (bool → tree) → tree.

In general, for every constructor, we can separate the non-recursive and recursive arguments

in this way; if there are n recursive arguments, we encode the recursion as C → t, where

|C| = n.

To generalize this, we construct a type A bundling the non-recursive data for all con-

structors. In our example, this is Either unit (int * string), denoting that the first constructor

has no data, and the second has an int and a string. Then, we encode the recursive argu-
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ments by defining a type B giving the type C for each constructor; thus, we want B : A →

Set. The cardinality of B(x) denotes the number of recursive instances in the constructor to

which x belongs. In our example, B (Left ) = empty and B (Right ) = bool, representing

0 and 2 recursive calls, respectively. To extend this to mutually recursive types, we include

an additional index I: Set, where I identifies each ADT in the block; then A: I → Set (the

non-recursive data for each ADT in the block), and B: ∀ (i: I), A i → Set (the number of

recursive instances for an ADT in the block and for a constructor in that ADT). With this

intuition, we can define W-types in Coq:

Var iab le ( I : Set ) (A : I → Set ) (B : ∀ ( i : I ) ( j : I ) , A i → Set ) .
Induct ive W : I → Set :=
| mkW : ∀ ( i : I ) ( a : A i ) ( f : ∀ j , B i j a→ W j ) , W i .

To encode P-FOLDR mutual ADTs as W-types, we must define I, A, and B. I is a type

with exactly n elements, where n is the number of ADTs in the mutual block. Figure

3.4 shows the construction of A (build base), while Figure 3.5 shows B (build rec). A is an

iterated Either over all constructors, where the type for each constructor is given by an

iterated tuple of the non-recursive argument types. We assume that we have a meaning

for type variables and non-recursive type symbols, which we will define later. This involves

some slightly awkward mechanisms, including a separate nonempty list type; this avoids

littering the resulting encoding with Either empty. B uses a type corresponding to the

number of recursive instances of the ith mutual ADT for a given constructor (we call this

build constr rec), and then matches on the A i argument to determine which constructor case

it is in, calling build constr rec. The full encoding for mutual block m as a W-type is thus:

Def in i t i on mk adts : f i n i t e ( l e n g t h m) → Set :=
W ( f i n i t e ( l e n g t h m) )

( fun n⇒ b u i l d b a s e ( a d t c o n s t r s ( f i n n t h m n ) ) )
( fun t h i s i ⇒ b u i l d r e c ( adt name ( f i n n t h m i ) )

( a d t c o n s t r s ( f i n n t h m t h i s ) ) ) .

Encoding the constructors is more complicated. We need a function that, given a constructor

symbol f for the nth ADT in mutual block m, an instance of build constr base (the bundled

non-recursive arguments) and an instance of the recursive arguments (expressed as a function
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Var iab le ( v a r s : t y p e v a r → Set )
( a b s t r a c t : typesym → l i s t v t y → Set ) .
(∗Keep on l y the non−r e c u r s i v e t yp e s : ∗)
Def in i t i on g e t n o n i n d v t y s ( l : l i s t v t y ) : l i s t v t y := . . .
(∗ Conver t Why3 type to Coq Set ∗)
Def in i t i on v t y t o s e t ( v : v t y ) : Set := match v with
| v t y i n t ⇒ Z | v t y r e a l ⇒ R | v t y v a r x ⇒ v a r s x
| v t y c on s t s vs ⇒ a b s t r a c t t s vs end .

Fixpo int b i g s p r o d ( l : l i s t Set ) : Set := . . . (∗ I t e r a t e d t u p l e ∗)
(∗ Bu i l d the base type f o r a s i n g l e c o n s t r u c t o r ∗)
Def in i t i on b u i l d c o n s t r b a s e ( c : funsym ) : Set :=

b i g s p r o d (map v t y t o s e t ( g e t n o n i n d v t y s ( s a r g s c ) ) ) .
(∗ Bu i l d the base type f o r a nonempty l i s t o f c o n s t r u c t o r s ∗)
Fixpo int b u i l d b a s e ( c o n s t r s : n e l i s t funsym ) : Set :=

match c o n s t r s with
| ne hd hd⇒ b u i l d c o n s t r b a s e hd
| ne cons hd t l ⇒ E i t h e r ( b u i l d c o n s t r b a s e hd ) ( b u i l d b a s e t l )
end .

Figure 3.4: Construction of non-recursive W-type data

(∗ [ c o u n t r e c o c c ] g i v e s number o f r e c u r s i v e typesym i n s t a n c e s ∗)
Def in i t i on b u i l d c o n s t r r e c ( t s : typesym ) ( c : funsym ) : Set :=

f i n i t e ( c o u n t r e c o c c t s c ) .
Fixpo int b u i l d r e c ( t s : typesym ) ( c o n s t r s : n e l i s t funsym ) :

( b u i l d b a s e c o n s t r s → Set ) :=
match c o n s t r s with
| ne hd f ⇒ fun ⇒ b u i l d c o n s t r r e c t s f
| ne cons f f s ⇒ fun o⇒ match o with
| Left ⇒ b u i l d c o n s t r r e c t s f
| Right y ⇒ b u i l d r e c t s f s y
end

end .

Figure 3.5: Construction of recursive W-type data
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from |m| to length-indexed lists of recursive instances), gives an instance of mk adts n. The

function has the signature:

Def in i t i on make cons t r ( n : f i n i t e ( l e n g t h m) ) ( f : funsym )
( Hin : . . . (∗ f i s a c o n s t r u c t o r f o r the nth mutual t ype ∗) )
( r e c s : ∀ ( x : f i n i t e ( l e n g t h m) ) ,
( c o u n t r e c o c c ( adt name ( f i n n t h m x ) ) f ) .− t u p l e ( mk adts x ) )

( c : b u i l d c o n s t r b a s e f ) : mk adts n :=
mkW ( f i n i t e ( l e n g t h m) ) . . .

where count rec occ gives the number of recursive instances of the given type symbol in

a function symbol’s arguments, and n-tuple is a length-indexed list from the ssreflect [54]

library.

Abstraction Layer These definitions encode Why3 ADT descriptions as inductive types,

but they do not have the correct types to satisfy the specification or the properties in §2.3.

Furthermore, a user of the semantics should not need to manually construct finite types,

build constr base instances, or the complicated dependent function describing the recursive

instances for a constructor. Instead, we need simpler abstractions adt rep and constr rep

which hide the low-level details of the W-type implementation. We consider a mutual ADT

applied to a list sort, as well as a pre-interpretation for type symbols. The resulting repre-

sentation of ADTs is much simpler (Figure 3.6). We then require on our pre-interpretation

for types (§3.1) the condition that all ADTs must be mapped to their corresponding adt rep:

Record p i d om f u l l ( pd : pi dom ) := {
ad t s : ∀ (m: mut adt ) ( s r t s : l i s t s o r t ) ( a : a l g d a t a t y p e )
( m in : mu t i n c t x m gamma) ( a i n : ad t i n mut a m) ,

domain ( dom aux pd ) ( t y p e s ym t o s o r t ( adt name a ) s r t s ) =
ad t r e p m s r t s ( dom aux pd ) a a i n ; } .

For the constructors to match our interpretation of function symbols, we need a function

that takes in an hlist of instances of the constructor’s arguments and outputs an element

of the appropriate adt rep. Therefore, we filter out recursive and non-recursive arguments

from the hlist and bundle them appropriately (as a build constr base and as the dependent

function for recs, respectively). Bundling the recursive arguments is conceptually simple,

but the dependent types in the hlist and the n-tuple make this difficult. For instance, we
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Def in i t i on ad t r e p (m: mut adt ) ( s r t s : l i s t s o r t )
(dom : s o r t → Set ) ( a : a l g d a t a t y p e ) ( a i n : ad t i n mut a m) :
Set := mk adts . . .

Figure 3.6: Abstraction layer for ADTs

Def in i t i on c o n s t r r e p {Γ : c on t e x t } ( gamma val id : v a l i d c o n t e x t Γ)
(m: mut adt ) ( m in : mu t i n c t x m Γ) ( s r t s : l i s t s o r t )
( s r t s l e n : l e n g t h s r t s = l e n g t h (m params m) ) (dom : s o r t → Set )
( t : a l g d a t a t y p e ) ( t i n : ad t i n mut t m) ( c : funsym )
( c i n : c o n s t r i n a d t c t )
(∗ A l l ADTs mapped a p p r o p r i a t e l y ( [ pi dom ] c o n d i t i o n ) ∗)
( ad t s : (∀ ( a : a l g d a t a t y p e ) ( Hin : ad t i n mut a m) ,

domain dom ( t y p e s ym t o s o r t ( adt name a ) s r t s ) =
ad t r e p m s r t s dom a Hin ) )

( a : a r g l i s t ( domain dom) ( sym s igma a rg s c s r t s ) ) :
a d t r e p m s r t s dom t t i n := make cons t r . . .

Figure 3.7: Abstraction layer for constructors

need to treat an hlist with elements of the same type as an ordinary Coq list. Nevertheless,

the resulting representation is clean, with hypotheses and types that are easy to work with

(Figure 3.7).

With this, we can add to our pre-interpretation for function and predicate symbols the re-

quirement that all constructor symbols map to constr rep (with a typecast to the appropriate

domain):

Record p i f u n p r e d := { . . . ;
c o n s t r s : ∀ m t c m in t i n c i n s r t s s r t s l e n a ,

f un s c s r t s a =
con s t r r ep dom gamma val id m m in s r t s s r t s l e n ( dom aux pd )

t t i n c c i n ( ad t s pd m s r t s ) a } .

Proving the Specification Proving the first two properties (Figure 3.2) is fairly straight-

forward; each follows directly from properties of the underlying W-type. However, the last

property is quite difficult to prove; we need an inverse function for constr rep, allowing us

to create an hlist from the bundled non-recursive arguments and bundled tuple-map for the

recursive arguments of make constr. We can build the hlist inductively but must update the

49



tuple map appropriately at each step; the dependent types make our induction hypotheses

tricky to state and difficult to use. We partially alleviate this by converting to an alternate

representation that does not use length-indexed tuples; instead it uses lists and maintains

separate proofs about length, with lemmas to convert back and forth. Ultimately, we define

this inverse function as a Σ-type (dependent pair) of the hlist and a proof that it is the inverse

of the original conversion function. The definition and proof are long and complex, but this

is hidden; we only need to know that such a computable inverse function exists. For similar

reasons, find constr rep is also defined as a Σ-type. The induction principle (Figure 3.3)

ultimately (but nontrivially) follows from the well-foundedness of the underlying W-type in

Coq. We note again that adt rep and constr rep can effectively be considered opaque; only

the properties in the specification are ever needed by clients (including in our proof system

in §3.4.2 and our compiler soundness proofs in Chapters 4 and 5).

Our encoding has some limitations: it cannot handle non-uniform inductive types (where

the type parameters change in recursive calls3) or nested inductive types (e.g., rose trees).

The latter can be encoded using mutually recursive types; however, our representation makes

critical assumptions about uniformity, and nonuniform types would require a substantially

revised encoding (and are rarely used in practice, see §7.2). Nevertheless, our semantics can

handle arbitrary list- and tree-like mutually recursive data structures sufficient for a wide

variety of real-world specifications.

3.2.2 Pattern Matching

Our Coq formalization handles pattern matching almost exactly as described in §2.3 (which,

as we noted, is a departure from Filliâtre). Our function that implements Jp, ty, dKp is called

match val single; it matches an element of type domain pd (v subst vt ty) against a pattern

p of type ty, returning an optional map including all the new variable bindings if the term

matches the pattern, and None otherwise. It has the signature:

3For instance type B a = | One of a | Two of (B (a, a)) is a datatype for perfect binary trees - those with
2n nodes; see Okasaki [88] for more discussion and uses of non-uniform types.
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Fixpo int ma t c h v a l s i n g l e ( v : v a l t y p e v a r ) ( t y : v t y )
( p : p a t t e r n ) (Hp : p a t t e r n h a s t y p e Γ p ty )
( d : domain pd ( v s u b s t v ty ) ) :
op t i on (amap vsymbol { s : s o r t & domain ( dom aux pd ) s })

There are two complications beyond §2.3 due to the dependent types. First, since we don’t

know yet which variables will be bound, the Σ-type in the result lets us hide the specific value

while avoiding extra dependent type obligations that would make the definition unwieldy. We

prove that if (x, y) appears in the outputted map of match val single, then the s component

of y is v subst vt (snd x) - in other words, we really do add valid valuation pairs. We

also prove that the output map contains exactly the free variables of the pattern. But it

is simpler to define our function without proving these facts immediately. Second, in the

constructor case of match val single, the arguments found by find constr rep (find in §2.3) are

themselves a heterogeneous list; just as with function and predicate interpretations, there

are several additional proof obligations to ensure that the dependent types are correct and

the definition is well-formed. Our function that implements Jt, psKpsv is called match rep; it

is relatively straightforward to define as long as we are careful to write it in a way allowing

Coq to prove termination of the nested term reps.

3.2.3 An Ergonomic Semantics

The functions term rep and formula rep are at the core of Why3Sem; any higher-level rea-

soning (including in the definitions of recursive functions and inductive predicates) relies on

their definitions. Though defined in a largely intuitive way that matches the pen-and-paper

semantics, they are very tricky to reason about on their own, not least because they rely on

many structures – the context (and its typing proof), the type and function symbol interpre-

tation, the type and term variable valuation, and the term or formula’s own typing proof. In

many cases, some or all of these structures might change. For instance, the context changes

in certain transformations that axiomatize recursive structures and the term variable valua-

tion changes during substitution. However, if these structures change in certain predictable
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ways, we can still reason about the denotations. In particular, we prove that term rep and

formula rep are equivalent under:

• Any two typing proofs – even without directly assuming proof irrelevance

(term rep irrel and fmla rep irrel).

• Any two contexts and any two function and predicate symbol interpretations that agree

on all function and predicate symbols present in the term or formula

(term change gamma pf). As we will see, this is crucial for defining inductive predicates

and recursive functions.

• Any two type variable valuations that agree on all type symbols present in the term

(tm change vt). This is tricky because the return type of term rep depends on the type

variable valuation; we need some typecasting.

• Any two term variable valuations that agree on all free variables in the term (tm change vv).

These theorems, proved as corollaries of two larger meta-theorems (tm fmla change vt and

term fmla change gamma pf), allow us to freely change irrelevant parts of the inputs and

reason effectively about the semantics.

Additionally, we define several forms of syntactic substitution and prove these correct.

In particular, we define simultaneous substitution of multiple terms for variables and derive

the simpler single-term-for-variable and variable-for-variable versions. For each of these, we

prove correctness by showing that these coincide with the semantic definitions (changing

valuations): for example, Jt[t1/x]Ktv = JtKtv[x→Jt1Ktv ]
if no variable from t1 becomes bound in

t (the general case is similar). With this, we define α-equivalence, show that α-equivalent

terms have identical denotations, give an α-conversion function to rename bound variables

(we give more details in §6.3.3), and finally give a capture-avoiding substitution function

that also provably coincides with the semantic definitions. We additionally define type

substitution, which is broadly similar but tricker because its specification involves reasoning

about changes to the type variable valuation, changing the return type of term rep.

For most of these theorems, we prove the result recursively for fun arg list and pred arg list,

52



Theorem f u n s r e p s p e c ( p f : p i f u n p r e d gamma val id pd )
( l : l i s t f u n p r e d d e f ) ( l i n : I n l ( mu t f u n s o f c o n t e x t gamma) )
( f : funsym ) ( a r g s : l i s t vsymbol ) ( body : term )
( f i n : I n ( f u n d e f f a r g s body ) l ) ( s r t s : l i s t s o r t )
( s r t s l e n : l e n g t h s r t s = l e n g t h ( s params f ) )
( a : a r g l i s t ( domain pd ) ( s ym s igma a rg s f s r t s ) )
( v t : v a l t y p e v a r ) ( vv : v a l v a r s pd v t ) ,
(∗The i n t e r p r e t a t i o n o f f ( s r t s ) i s the same as : ∗)
f u n s r e p p f f l ( f u n i n mu t f un f i n ) l i n s r t s s r t s l e n a =

ca s t . . . (
t e rm rep gamma val id pd
(∗ s e t t i n g the f u n c t i o n params to s r t s , ∗)
( v t w i t h a r g s v t ( s params f ) s r t s )
(∗ r e c u r s i v e l y u s i n g [ f u n s r e p ] and [ p r e d s r e p ] , ∗)
( p f w i t h f u n p r e d p f l l i n )
(∗ s e t t i n g the f u n c t i o n arguments to a , ∗)
( v a l w i t h a r g s ( upd v v a r g s pd v t vv ( s params f ) s r t s

( eq sym s r t s l e n ) ( s params Nodup ) ) a r g s a )
(∗ and e v a l u a t i n g the body ∗)
body ( f r e t f ) ( f b o d y t y p e l i n f i n ) ) .

Figure 3.8: Recursive function specification

prove a result describing how match val single changes under, for instance, changing vt, and

finally prove the theorem for term rep and formula rep. This process is quite involved, but

a few general results suffice for all of our needs: defining recursive functions and predicates

(§3.2.4, §3.2.5), giving a sound proof system (§3.4), and compiling P-FOLDR to polymorphic

FOL (Chapters 4 and 5).

3.2.4 Recursive Functions

Specification Figure 3.8 gives the only property required of our function representations

(§2.3): if we interpret all recursive functions as their representations, applying the function

is equivalent to evaluating the body on the arguments. Once again, we will show how to

construct the interpretations funs rep satisfying this specification. Note that this specifica-

tion is subtle: the function body is interpreted in a context in which the function itself is

interpreted correctly. This circularity requires us to give an explicit definition of the func-
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tion’s interpretation as a recursive function in Coq. Since all functions must be provably

terminating in Coq (as in Why3), we encode these using well-founded recursion.4

Core Encoding Broadly, our approach is as follows: we give a relation on adt rep rep-

resenting structural inclusion and prove that this is well-founded. We define the recursive

function via well-founded induction on (a lifted version of) this relation; the function body

consists of modified versions of term rep and formula rep that make recursive calls whenever

evaluating a function or predicate application of a symbol in the mutually recursive block.

To prove that every recursive call occurs on a “smaller” value, we keep track of several in-

variants about the relationship between syntactically smaller variables (from the termination

check in the typing rules) and their semantically smaller valuations.

Our termination checker is described in §2.2.2 – recall that it maintains a set s of known

smaller variables (called small in the Coq formalization) and a set h (hd – implemented as

an optional variable) of the input, updating these sets as variables are bound and when

additional smaller variables are found within pattern matches.

Our core encoding for the recursive function assumes that we have all needed information

– the mutual ADT m and sorts srts on which we recurse and the decreasing index for each

function in the mutual block. One can define general recursive functions in Coq on well-

founded relations (a relation in which there are no infinite chains of “smaller” elements) using

the Fix operator. This requires a binary relation, a proof that the relation is well-founded,

and proofs that all recursive calls occur on instances smaller than the input.

Thus, we first define a binary relation adt smaller on the dependent pair {s : sort & domain

s} encoding structural inclusion. In particular (ignoring typecasts), adt smaller {s1, d1} {s2,

d2} holds exactly when s1 and s2 are instances of the same mutual ADT m(vs) and when,

if d2=c(args) for constructor c and arguments args, then d1 appears in args. We can prove

that this relation is well-founded using adt rep ind, our generalized induction principle over

4Non-recursive functions and predicates satisfy the same specification but no longer have any circularity;
we directly interpret them as their function bodies.
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Fixpo int t e rm r ep aux . . . ( Hty : t e rm ha s t yp e gamma t ty )
(Hdec : d e c r e a s e f u n f s ps sma l l hd m vs t )
( Hsmal l : ∀ x , x ∈ sma l l →

v t y i n m m vs ( snd x ) ∧ a d t sm a l l e r t r a n s ( h i d e t y ( v x ) ) d )
(Hhd : ∀ h , hd = Some h→

v t y i n m m vs ( snd h ) ∧ h i d e t y ( v h ) = d ) . . . := . . .

Figure 3.9: The invariants for term rep aux

adt reps; we then give the transitive closure adt smaller trans, which is still well-founded.

Before defining the recursive function, we first need to give the input and return types; for

the Fix operator, all needed arguments must be packed into a single type. The full recursive

function must include the function or predicate symbol and a proof that the symbol is in the

mutual block (we can view this as defining a family of functions to encode mutual recursion),

a list of sorts srts, an hlist of function inputs of the appropriate type, a variable valuation,

and a proof that the type variable valuation associates each function type parameter with

the corresponding element of srts. We call the fully packed type packed args2. We lift

the adt smaller relation to this type first by giving a relation on hlists (checking that the

elements at the claimed decreasing index of each satisfy adt smaller trans), and then lifting

it through the packed arguments; this lifted relation is still well-founded. Our function’s

return type depends on the input: when given a function symbol, it returns an element of

the corresponding domain of the function’s return type; on a predicate symbol, it returns a

bool. Note that this is flexible enough to permit mutual blocks with a mix of functions and

predicates.

Our function (funcs rep aux) works by defining nested versions of term rep and formula rep

called term rep aux and formula rep aux; they describe how to interpret the term or formula

using appropriate recursive calls to funcs rep aux. In the following, we discuss term rep aux.

formula rep aux is similar, but has a simpler return type.

The types of these functions are significantly more complex than term rep — they must

maintain many more invariants beyond typing (Figure 3.9). In particular, they keep track of
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small and hd (from the termination check), the proof that the term terminates (decrease fun),

the fact that small and hd consist of ADTs (vty in m), and the crucial invariants about small

and hd valuations: the valuation of every variable in small is actually smaller than the

original input according to adt smaller trans, and hd’s valuation is equal to that of the input

at the decreasing index (d). This invariant is the key to defining this function: we establish

a link between syntactic smallness (which involves keeping track of a set of variables) and

the semantic notion based on structural inclusion of adt reps (and thus of the underlying

W-types).

The body of term rep aux is broadly similar to term rep, except for the function appli-

cation case and the proofs of invariant preservation. The invariant preservation is mostly

straightforward, but the interesting case occurs when we add the pat constr vars to small

when pattern matching. To show that the invariant is preserved, we must show that all

such variables have semantically smaller values (according to adt smaller trans). We show

a slightly simplified form of this theorem (pat constr vars finds the variables known to be

smaller inside a pattern as described in §2.3):

Theorem 3.2.1 (match val single smaller). For any pattern p of type τ , d ∈ Jv(τ)Kτ , and

map m, if Jp, τ, dKp = Some m, then for any x and y such that m[x] = Some y, if x ∈

pat constr vars p, then adt smaller trans y d holds.

This theorem is difficult to prove, but it demonstrates that our syntactic check indeed

aligns with the semantic notion that we intended; it also ties together our representations for

ADTs, pattern matching, and the well-founded relation we need for our recursive functions.

Thus, these features cannot be considered in isolation; for a complete semantics, we need

to reason about the subtle interactions between these structures to ensure everything is

well-defined (note that this is not the case when describing conditions on interpretations in

Chapter 2).

The last and most important piece of the puzzle is to handle the actual call to funcs rep aux

in the function application case of term rep aux. Namely, we must show that the arguments
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to this call are indeed smaller than the original input. The hlist argument comes from

fun arg list: it is the result of recursively calling term rep aux on the function call’s list of

arguments ts. From the termination condition, we know that the element of ts at the de-

creasing index i is a variable x in small. By our invariant Hsmall, x’s valuation is indeed

smaller than the input; we can lift this through our well-founded relations to get the result

we need.

Formalizing this argument in Coq is not trivial. First, we need a new version of fun arg list

(which we call get arg list recfun) that accounts for the additional invariants. To use the

Hsmall invariant we need to know that the ith element of get arg list recfun evaluates to v x.

This involves two pieces: showing that the ith element of get arg list recfun is term rep aux

applied to the ith element of ts and showing that term rep aux evaluated on a variable x

returns v x. But within the definition of term rep aux, we do not know this second fact;

therefore we need to encode this information in the return type of term rep aux.5

The first fact is even trickier, as a simple (transparent) proof fails to satisfy Coq’s ter-

mination checker: Coq cannot tell that the call to term rep aux within the termination proof

occurs on decreasing terms. Even inlining these proofs does not solve the issue; instead,

we encode this proof into the return type of get arg list recfun so that it returns both an

hlist and a proof that, for every i within the correct bounds, the ith element is formed by

term rep aux on the ith element of the input term list. At last, this allows Coq to prove that

our function terminates.

The rest of the definition of funcs rep aux is not too complicated; it creates a valuation

that sets the type and term variables to the srts and function body free variables, respectively,

and then calls term rep aux and formula rep aux, typecasting the result as needed. We omit

the full definition here.

5In fact, we need to encode yet another pieces of information in the return type of term rep aux: the fact
that if term rep aux is evaluated on a constructor f applied to term list tms, then we can find the arg list a
such that the result is JfKλ(a), and that if the ith element of tms is a variable, then the ith element of a is
v(x). We need this condition for our additional termination case allowing us to match on a constructor to
find smaller variables. But this does not complicate the proof significantly beyond the above variable case.
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Abstraction Layer The abstraction layer is significantly simpler than for ADTs; we need

a little translation to pack the arguments appropriately and to use the assumptions from the

well-typed context to populate all the information needed, followed by a call to funcs rep aux.

To find the decreasing indices we use our verified typechecker, as the typing rules only

guarantee that such indices exist. With this, we have a complete definition for recursive

functions, which has exactly the type we need for our pre-interpretation:

Def in i t i on f u n s r e p ( p f : p i f u n p r e d gamma val id pd ) ( f : funsym )
( l : l i s t f u n p r e d d e f ) ( f i n : funsym in mut fun f l )
( l i n : I n l ( mu t f u n s o f c o n t e x t gamma) ) ( s r t s : l i s t s o r t )
( s r t s l e n : l e n g t h s r t s = l e n g t h ( s params f ) )
( a : a r g l i s t ( domain pd ) ( s ym s igma a rg s f s r t s ) ) :
domain ( f un s ym s i gma r e t f s r t s ) := . . . f u n s r e p a u x . . .

Proving the Specification Finally, we must prove the specification of Figure 3.8. To

show this, we prove that term rep aux and term rep are equivalent as long as the pre-

interpretation assigns recursive functions to funs rep aux and the valuation is set appro-

priately. This theorem seems problematic: to use our function representation, we need to

construct a pre-interpretation that already requires this representation to be defined; in

other words, funcs rep aux would be defined in terms of itself. But we can break the cir-

cularity by proving another result: similarly to what we showed for term rep in §3.2.3, we

prove that term rep aux is invariant under changes to the pre-interpretation that agree on all

function and predicate symbols that are not part of the mutual block. Thus, we can define

funcs rep aux in terms of an arbitrary pf, and then we can change pf to set the recursive

function symbol interpretations correctly after the fact without changing the semantics.

3.2.5 Inductive Predicates

Recall that we must give an interpretation for inductive predicate p(α) such that all con-

structors for p hold and for any other predicate q that satisfies the constructors, for any

arguments a, Jp(s)Kλ(a)→ q(s)(a) (§2.3). Here, we do not show the Coq specification.
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Induct ive even : nat → Prop :=
| ev 0 : even 0
| ev SS : ∀ n , even n→ even (S (S n ) ) .

Lemma e v e n i n d : ∀ (P : nat → Prop ) ,
P 0→ (∀ n : nat , even n→ P n→ P (S (S n ) ) ) →
∀ n : nat , even n→ P n

Def in i t i on even ’ : nat → Prop :=
fun m⇒ ∀ (P : nat → Prop ) , P 0→ (∀ n , P n→ P(S (S n ) ) ) → P m.

Lemma e v e n l e a s t : ∀ (P : nat → Prop ) ,
P 0→ (∀ n , P n→ P(S (S n ) ) ) → ∀ m, even ’ m→ P m.

Lemma e v e n c o n s t r s : even ’ 0 ∧ (∀ n , even ’ n→ even ’ (S (S n ) ) ) .
Lemma e v e n equ i v : ∀ n , even n ↔ even ’ n .

Figure 3.10: Inductive predicate and impredicative representation for even

Inductive predicates are significantly simpler to define than recursive types or functions,

as we can take advantage of the impredicativity of Coq’s Prop (where we can quantify over

Prop and still produce a term in Prop) to use functions instead of inductive types. We

thus use an representation similar to a Böhm-Berarducci [26] encoding for types, where we

represent an inductive predicate as a function in Coq encoding its induction principle. Figure

3.10 demonstrates this technique with the even property on natural numbers. Defining even

inductively generates the even ind induction principle. Alternatively, we can encode even’ in

the following way: even’ m holds whenever all propositions P : nat → Prop that satisfy the

even constructors satisfy m. Note that this crucially relies on the impredicativity of Prop;

this would not allow us to encode ADTs, since Coq’s Set is not impredicative.6 We can show

that even’ is correctly defined: we can prove the least predicate properties and can prove

it equivalent to even (the latter is not needed for the generic encoding, but it demonstrates

that this approach defines the predicate we expect).

We generalize this approach to define arbitrary inductive predicates; Figure 3.11 shows

the non-mutual case. The mutual case is similar, but the P argument becomes an hlist of

∀(p: predsym) (srts: list sort), hlist (domain pd (sym sigma args p srts)) → bool over the list

of predicates; i.e., an arbitrary property of each predicate in the block.

6Impredicative Set is inconsistent with classical logic and indefinite description, which we use.
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Def in i t i on i n d p r e d r e p s i n g l e ( p f : p i f u n p r e d gamma val id pd )
( p : predsym ) ( f s : l i s t f o rmu la )
(Hform : F o r a l l ( f o rmu l a t yp ed gamma) f s ) ( s r t s : l i s t s o r t )
( a : a r g l i s t ( domain pd ) ( s ym s igma a rg s p s r t s ) ) : boo l :=
a l l d e c (∗ De f i n i t i o n : For any p o s s i b l e P∗)
(∀ (P : ∀ ( s r t s : l i s t s o r t ) ,

a r g l i s t ( domain pd ) ( s ym s igma a rg s p s r t s ) → boo l ) ,
(∗ I f a l l c o n s t r u c t o r s ho ld when p i s i n t e r p r e t e d as P∗)
i t e r a n d (map i s t r u e ( dep map

( @fo rmu la r ep gamma val id pd ( mk vt ( s params p ) s r t s )
( i n t e r p w i t h P pf p P) (mk vv ) ) f s Hform ) ) →
(∗Then P ho l d s o f a ∗) P s r t s a ) .

Figure 3.11: Representation of (non-mutual) inductive predicates

Proving the least predicate property is trivial; it follows immediately from our definition.

However, showing that the constructors are satisfied is much harder. We give a proof sketch.

We denote JfKf(p→P ;v) as the interpretation of f under valuation v when p is interpreted as

P . We let I represent indpred rep p. First, we prove that every constructor fi of inductive

predicate p can be rewritten into a special form: ∀x, let y = t in (g1 ∧ . . . ∧ gk) → p(z)

— this follows from the inductive predicate grammar in the typing rules (Figure 2.10) and

the definitions of term rep and formula rep. With this form, we need to prove Jp(z)Kf(p→I;v),

assuming JgjKf(p→I;v), where v is formed by assigning correct values to x and y. By the

definition of indpred rep, we need to prove that for any P , if JfjKfp→P for all j, then P holds

of z. In particular, this implies that JfiKfp→P , so by again rewriting fi into its special form,

we see that it suffices to prove JgjKf(p→P ;v) for all j. We already assumed JgjKf(p→I;v). We now

prove separately that, for any formula g, if p appears strictly positively in g, then JgKf(p→I,v)

implies that JgKf(p→P,v) for any P and v. This completes the proof.

Unsurprisingly, positivity is crucial in ensuring that the least predicates exist for a given

definition. We again rely on the typing rules to construct objects satisfying the intended

properties. To complete our proofs of the inductive predicate properties, we need a result

that lets us change the interpretation for each predicate symbol p in the mutual block; just

as with recursive functions, this allows us to reason about indpred rep in the context in which
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all inductive predicates are already assigned to their representations.

3.3 P-FOLDR as a Logic

We now define a full interpretation — a pre-interpretation that is consistent with the spec-

ifications for recursive functions and predicates and inductive predicates. We prove that

for any possible assignment to uninterpreted type, function, and predicate symbols, there is

a full interpretation agreeing with this initial assignment; i.e. any well-typed set of Why3

definitions has a model:

Theorem f u l l i n t e r p e x : ∀ f u n i p r ed i ,
{ p f : p i f u n p r e d gamma val id pd pdf |

f u l l i n t e r p gamma val id pd p f ∧
(∀ f s r t s a , I n ( ab s f un f ) gamma→

( f un s gamma val id pd p f ) f s r t s a = f u n i f s r t s a ) ∧
(∀ p s r t s a , I n ( ab s p r ed p ) gamma→

( p r ed s gamma val id pd p f ) p s r t s a = p r e d i p s r t s a ) } .

We can define the notions of validity, satisfiability, etc (§2.3) and prove metatheorems

about P-FOLDR:

Theorem 3.3.1 (consistent). For any full interpretation I and formula f , it is not the case

that both I ⊨ f and I ⊨ ¬f .

Theorem 3.3.2 (log conseq equiv). If f is monomorphic (for instance, by replacing type

variables with fresh type constants), then ∆ ⊨ f iff the set {¬f} ∪∆ is unsatisfiable.

Theorem 3.3.3 (semantic lem). For any full interpretation I and monomorphic formula f ,

I ⊨ f or I ⊨ ¬f .

Theorem 3.3.4 (semantic deduction). For any set of formulas ∆ and monomorphic for-

mulas f and g, ∆ ⊨ f → g iff {f} ∪∆ ⊨ g.

These metatheorems check that we defined our logic appropriately (for example, that we

did not allow a formula and its negation to be true) and will be useful for our proof system.
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Theorem 3.3.2 justifies the negate-and-prove-UNSAT approach to proving validity using an

SMT solver.

We then give definitions for Why3 proof tasks (context, hypotheses, and goal) and trans-

formations (§2.3). Recall that a task is valid if Γ,∆ ⊨ f and a transformation T is sound

if, whenever task t is well-typed, if all the output tasks T (t) are valid, then so was t. In

Chapter 5, we prove that the main Why3 transformations eliminating recursive structures

are indeed sound according to Why3Sem.

3.4 A Sound Proof System for P-FOLDR

We want to validate that Why3Sem is correct and useful. To do this, we apply the semantics

in several ways: we give a natural-deduction-style proof system and prove soundness, use

this proof system (and a derived tactic library) to prove goals from Why3’s standard library,

and (later) prove the soundness of the main transformations Why3 uses when translating to

simpler logics (Chapter 5).

We argue for the correctness of Why3Sem by first noting that we closely match the

intended semantics (Chapter 2 and [48]). Additionally, the fact that we can prove the

standard natural deduction rules and can prove Why3 goals using this proof system – with

proofs that follow the structure we expect – provides strong evidence that Why3Sem closely

aligns with the intended meaning of the various connectives and features in the logic. These

applications also show that Why3Sem is useful; it admits a standard proof system and a

more usable tactic-based interface, it allows us to prove naturally occurring Why3 goals,

and, most importantly, we can prove Why3 transformations sound and ultimately produce

a proved-correct P-FOLDR to FOL compiler.
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3.4.1 Natural Deduction

Proving goals directly from the semantics is tedious and unintuitive; we want a proof sys-

tem with which to prove validity syntactically. We will say that a task (Γ,∆, f) is derivable

(Γ,∆ ⊢ f) if we can prove f using assumptions ∆ in context Γ. To define when a task is deriv-

able, we could give all the standard natural deduction rules - introduction and elimination

rules for each connective, a rule to define classical logic (e.g. double negation elimination),

rules for handling equality, and rules for working with the recursive definitions. Instead, we

take a simpler approach, giving a single rule: if transformation tr is sound whenever a task

satisfies P , if t satisfies P , and if all the outputs of tr t are derivable, then so is t:

Induct ive d e r i v e s : t a s k → Prop :=
| D trans : ∀ ( t r : t r a n s ) ( t : t a s k ) ( l : l i s t t a s k )

(P : t a s k → Prop ) (Hp : P t ) , (∗ t s a t i s f i e s P∗)
t a s k w f t → (∗ I f t i s we l l−formed ∗)
s o u n d i f t r a n s P t r → (∗ I f t r i s sound on t a s k s s a t i s f y i n g P∗)
(∀ x , I n x ( t r t ) → d e r i v e s x ) → (∗ t r ou tpu t s a r e d e r i v a b l e ∗)
d e r i v e s t . (∗Then t i s d e r i v a b l e ∗)

Theorem soundnes s ( t : t a s k ) : d e r i v e s t → t a s k v a l i d t .

The soundness of this proof system is immediate. With this single definition, we can prove

all the standard natural deduction rules. For instance, suppose we want to prove the and-

introduction rule. We define the transformation (Γ, ∆, f ∧ g) ⇒ [(Γ, ∆, f); (Γ, ∆, g)]. To

prove the soundness of this transformation, we show that if Γ,∆ ⊨ f and Γ,∆ ⊨ g, then

Γ,∆ ⊨ f ∧ g, which is easy. The and-intro rule follows immediately:

Lemma D andI gamma d e l t a f g :
d e r i v e s (gamma , de l t a , f ) →
d e r i v e s (gamma , de l t a , g ) →
d e r i v e s (gamma , de l t a , f ∧ g ) .

We use the same idea to give the introduction and elimination rules for all connectives,

as well as properties of equality (that it is an equivalence relation and a congruence), the

hypothesis rule, and some context-manipulating rules (weakening, reordering and renaming).

Finally, we give rules dealing with function definitions, ADTs, and pattern matching. Some

of these rules are significantly trickier to prove sound:
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Quantifiers Particularly challenging are the ∀-introduction and ∃-elimination rules – in

both cases, we must modify the context to provide a fresh constant symbol and reason about

how interpretations for the two contexts relate, being careful to map the fresh symbol to

the valuation of the quantified variable. Modifying the context is particularly tricky because

everything depends on it – the typing rules, interpretations, valuations, and semantics.

Rewriting To enable rewriting of equal terms or equivalent formulas, we give a term-

for-term substitution function replace tm that we prove preserves typing7 and semantics

(assuming that the terms/formulas being substituted have equivalent denotations). As usual,

we must be careful to avoid variable capture; here, we are conservative and avoid substituting

under any binders clashing with a free variable (rather than α-converting).

Type Substitution Given a polymorphic hypothesis, we want to substitute types; we

provide a generic type substitution function ty subst to do this. We want to prove a similar

correctness theorem as for term substitution (§3.2.3), but this is extremely challenging. Not

only is the theorem difficult to state since the type substitution changes the return type

of term rep, but because the variables are typed, under a type substitution, two unequal

variables can become equal (ex: xa and xint are equivalent under the substitution α→ int).

Reasoning about the uniqueness of variable names inductively is very tricky; we ultimately

need several stronger intermediate notions about unique names that disappear from the final

theorem.

We also have 3 transformations/proof rules derived from our recursive structure seman-

tics:

Unfolding Recursive Functions We provide a proof rule to replace a (possibly) recursive

function or predicate instance with its body (i.e. unfolding). The soundness follows relatively

directly from our semantics for recursive functions (§3.2.4), though our implementation has

7We found a bug where such rewriting is not well-typed in the Why3 tool, see §4.2.3.
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2 passes: finding recursive function instances and then rewriting, allowing us to control how

many instances should be unfolded as well as to reuse the rewriting proofs.

Simplifying Pattern Matches We also want a way to simplify “obvious” pattern matches

– for example, match nil with | nil → a | cons x y → b should simplify to a. To do this, we

provide a simplifier matches that determines whether a given pattern matches (and if so,

gives the matched variable-term pairs), does not match, or if we cannot tell (e.g. if the

term matched on is uninterpreted). We then prove that if match val single (§3.2.2) gives

None, then matches gives NoMatch or DontKnow, and if match val single gives Some l, then

matches gives DontKnow or Matches l’, where l and l’ agree on variables, and l represents

the interpretation of the terms in l’. We finally prove that simplifying the Matches cases via

simultaneous substitution of the discovered terms preserves the semantics.

Induction over ADTs Finally, we prove an induction rule for non-mutual ADTs. Suppose

we have an ADT a with constructors f1, . . . , fn such that for constructor i, the recursive

arguments are ai,1, . . . , ai,k and the non-recursive arguments are bi,1, . . . , bi,j. Then, to prove

goal ∀(x : a), p(x), we would like instead to prove n goals, where the ith goal has the form:

∀a, b, p(ai,1) ∧ . . . ∧ p(ai,k)→ p(fi(a, b))

Note that p(ai,m) is really the substitution p[ai,m/x]. The soundness of this transforma-

tion ultimately, though highly nontrivially, follows from adt rep ind (§3.3); we establish a

correspondence between the syntactic induction expressed by this transformation (in terms

of constructor function symbols and arguments) and the semantic induction principle (ex-

pressed via the constr rep functions applied to hlists).

Note that we show the soundness of these proof rules by providing transformations as

Coq functions. However, these should be considered distinct from the Why3 transformations

we discuss in Chapter 5. Though some of the above proof rules have Why3 analogues, here
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Tactic Purpose
intros Introduce quantified variables and hypotheses
assert Prove an intermediate result
f equal Turn goal f x1 . . . xn = f y1 . . . yn into goals x1 = y1, . . . , xn = yn
reflexivity Solve x = x
symmetry Turn x = y into y = x
apply H If H : P → Q in context, turn goal Q into goal P
clear H Remove hypothesis H
split Turn goal P ∧Q into goals P and Q
exists Instantiate existential quantifier
destruct H Depending on hypothesis:

1. Split hypothesis H: P ∧Q into hypotheses P and Q
2. Split hypothesis H: P ∨Q, results in 2 goals, one assuming P ,

the other assuming Q
3. Change hypothesis H: ∃x, P (x) to get x and P (x) for fresh x

Note: unlike Coq, not defined for arbitrary inductive types
left/right Turn goal P ∨Q into P or Q
exfalso Turn goal into False
apply I Solve goal True

Figure 3.12: Basic tactics implemented in our Why3 proof system

we focus on writing simple transformations to prove the soundness of the proof rules; we are

neither faithful to Why3 nor concerned with any optimizations. Nevertheless, our generic

and extensible derivation rule allows us to replace these with more complex transformations,

enabling the use of the compiler transformations (e.g. axiomatization of ADTs) in the proof

system with no issue.

3.4.2 Proving Why3 Goals in Coq

With these proof rules, we then developed a small tactic library for applying the proof system

(just as with Coq, it is tedious to reason in pure natural deduction). Our tactic library is

based on Coq’s. Figure 3.12 shows the basic Coq tactics we implemented; almost all map

fairly straightforwardly to a natural deduction introduction or elimination rule. The more

complex tactics are shown in Figure 3.13; they correspond to the more sophisticated proof

rules we detailed above.
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Tactic Purpose
specialize H y Turn hypothesis H : ∀x, P (x) into P (y)
specialize ty H a Specialize polymorphic hypothesis H with type a
rewrite H Rewrite term equality or logical equivalence H; we include forward

and backward variants for both goals and hypotheses
unfold f Unfold (recursive) function or predicate f
unfold at f n Unfold nth occurrence of f
simpl match Simplify pattern matches
induction Given goal of form ∀(x : a), P (x), perform induction over non-

mutual ADT a

Figure 3.13: More complex tactics implemented in our Why3 proof system

lemma append as soc : ∀ l 1 l 2 l 3 : l i s t ’ a ,
l 1 ++ ( l 2 ++ l 3 ) = ( l 1 ++ l 2 ) ++ l 3

lemma append l eng th : ∀ l 1 l 2 : l i s t ’ a ,
l e n g t h ( l 1 ++ l 2 ) = l e ng t h l 1 + l e ng t h l 2

lemma mem append : ∀ x : ’ a , l 1 l 2 : l i s t ’ a ,
mem x ( l 1 ++ l 2 ) ↔ mem x l 1 ∨ mem x l 2

lemma mem decomp : ∀ x : ’ a , l : l i s t ’ a ,
mem x l → ∃ l 1 l2 , l = l 1 ++ Cons x l 2

lemma r e v e r s e r e v e r s e : ∀ l : l i s t ’ a , r e v e r s e ( r e v e r s e l ) = l
lemma reverse mem : ∀ l : l i s t ’ a , x : ’ a ,

mem x l ↔ mem x ( r e v e r s e l )
lemma r e v e r s e l e n g t h : ∀ l : l i s t ’ a ,

l e n g t h ( r e v e r s e l ) = l e n g t h l
lemma i n o r d e r l e n g t h : ∀ t : t r e e ’ a ,

l e n g t h ( i n o r d e r t ) = s i z e t

Figure 3.14: Selection of theorems from Why3 standard library proved correct in Coq
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We then use these tactics (and some others, for instance to apply the typechecker) to

prove the validity of Why3 goals; these proofs end up quite similar (albeit with less automa-

tion) to the corresponding proof in Coq. Before we can do this, we first provide a limited

implementation of Why3 theories, which we view as a preprocessing step to create the con-

text Γ and local definitions ∆; we do not keep track of theory ancestry as Why3 does.8 We

handle two types of imports: using a theory (use t) makes all definitions, lemmas, and axioms

in t (and its dependencies) available to use, while cloning (clone t as T with ...) creates a

new copy of a theory, possibly instantiating some of the abstract type, function, and pred-

icate symbols with concrete values. Our implementation requires all clones to be exported.

Nevertheless, this allows us to handle the abstraction provided by theories appropriately.

Defining and writing functions over theories is a bit tricky: the natural definition does not

lead to structurally recursive functions, so we use Equations. The preprocessing is also fairly

complex: for each theory, we need its internal and external context (as not all imported used

theories are exported); this depends on the external contexts of previously defined theories.

To define the contexts, we need to qualify names and instantiate abstract parameters. The

last function we need finds the tasks for a given theory — for every lemma or goal, there

is an associated task consisting of the previously defined context (included the exported

contexts of any imported theories), the local lemmas and axioms (and the exported lemmas

and axioms from imported theories), and the monomorphized goal. Then, we can prove a

theory valid by proving each of its tasks valid.

We translated parts of Why3’s relations, algebra, int, option, list, and bintree libraries,9

proved that these theories are all well-typed, and proved the validity of the Append and

Reverse theories for lists and the InorderLength theory for binary trees. See Figure 3.14 for

a selection of lemmas proved. These lemmas, and the definitions they depend on, involve

extensive use of theory using and cloning, polymorphism, induction over ADTs, recursive

8For our verified compiler, we do not prove anything about theories. We are principally interested in
reasoning once the theory has been split into its constituent tasks.

9https://why3.lri.fr/stdlib/
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functions, and pattern matching. This gives us additional confidence in the correctness of

Why3Sem; we can prove these results in the way we expect, suggesting that the semantics

truly capture the intended meaning of the connectives and recursive structures.

This proof system has several limitations: since it is deeply embedded in Coq, and each

tactic is running a Coq function over the AST of the deeply embedded P-FOLDR terms,

it is both slow and unable to take advantage of regular Coq tactics. Similarly, we cannot

reason about types such as lists and trees as Coq inductive types, but rather only using

our effectively opaque encoding. Our main focus is a verified compiler from P-FOLDR to

polymorphic FOL; however, if we wanted a practical verified Coq back-end for Why3 as well

(which would be valuable, as the current Why3 Coq back-end can easily produce ill-typed

Coq code - see §7.3), we could build this system into a less deeply embedded one, likely by

relating our semantics to idiomatic Coq terms via MetaCoq. We discuss this further in §7.6.

3.5 Related Work

Some work on mechanizing logic in proof assistants aims at formalizing deep metatheorems

of first-order logic and its proof systems, such as completeness [51] and incompleteness [86].

Other recent work has focused on formalizing the much richer logics used in proof assistants.

Barras [14] builds a denotational model for much of the Calculus of Inductive Constructions

inside the Coq proof assistant while Anand et al. [6] build a PER model for Nuprl in Coq.

Roßkopf et al. [96] formalize the higher-order logic used in the Isabelle proof assistant and

give a verified proof checker, while Candle [3] is a fully verified HOL Light implementation

written in CakeML.

Arguably the most sophisticated of these efforts is MetaCoq [102], which formalizes Coq’s

syntax and type system within Coq itself. MetaCoq includes a deep embedding of the syntax,

typing rules, and operational semantics (reduction) for an extended version of the Calculus

of Inductive Constructions. In many ways, our syntax and typing rules can be seen as sim-
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plified versions of MetaCoq’s, with similar conditions for objects like inductive predicates

(e.g. positivity). However, the MetaCoq project’s goals are orthogonal to ours. It proves

metatheoretic results about the (much more complicated) type system (e.g. subject reduc-

tion, consistency assuming strong normalization). Meanwhile, we give a model of Why3’s

logic (our denotational semantics) and aim to enable reasoning about semantics-preserving

transformations on Why3 terms and formulas. Since MetaCoq focuses on typing and reduc-

tion rules, it does not construct recursive structures (types, inductive predicates, pattern

matching) as we do. MetaCoq also omits exhaustiveness checking (see §4.3). Moreover,

one of the trickiest parts of our work, dealing with termination of recursive functions, is

omitted from MetaCoq completely. It leaves the termination check abstract, since strong

normalization is assumed – rather than in our work, where we have to prove that the Why3

termination check leads to a well-typed Coq term. The normalization limitation has been

overcome for a simpler type theory without general inductive types [4]; we discuss possible

ways to use ideas from our semantics in MetaCoq in §7.5.
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Chapter 4

A Verified Pattern Matching

Compiler

In this chapter, we present the first formalization and mechanized proof of a sophisticated

pattern matching compiler. The problem of compiling pattern matches to simpler constructs

like decision trees is extremely well-studied (§4.3), largely with the goal of developing efficient

compilation techniques for ML and Haskell. Why3’s compiler is based on pattern matrix

decomposition and is very similar to the techniques of Le Fessant and Maranget [71] and

Maranget [80], which also form the basis of the algorithm used in the OCaml compiler. We

describe Why3’s algorithm in detail, prove its soundness, detail how it is used to implement

exhaustiveness checking (which differs somewhat from existing techniques in the literature

[79]), formulate a robustness property, and describe an exhaustiveness bug we discovered in

Why3. In the next chapter, we will additionally prove the soundness of the Why3 transfor-

mation that compiles all pattern matches before ADT axiomatization. Though we implement

the exact algorithm found in Why3, the technique is quite general and many of our proofs

could be reused in other contexts.
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match t1 , . . . , tn with
| p1,1 , . . . , p1,n → a1
| p2,1 , . . . , p2,n → a2
| . . .
| pm,1 , . . . , pm,n → am
end


p1,1 p1,2 . . . p1,n a1
p2,1 p2,2 . . . p2,n a2

...
pm,1 pm,2 . . . pm,n am



Figure 4.1: Simultaneous pattern matching and the resulting pattern matrix

4.1 An Algorithm for Compiling Pattern Matches

As is standard [71, 80], we view the (simultaneous) pattern match as a matrix P (Figure

4.1). Note that we will refer to the last column in the matrix as “actions”; they can be

terms or formulas. We next define several matrix decompositions. First, specialization for a

constructor c, denoted S(c, P ), gives the remaining matrix assuming that the first term we

match on (t1) is an instance of constructor c. Intuitively, we can remove all rows beginning

with a non-c constructor, replace c with its k arguments, replace a wildcard with k wildcards,

and split a disjunction into two further cases (where ⊕ denotes concatenation, i.e. gluing

one matrix above the other):

Pattern pj,1 Row(s) of S(c, P )

c(q1, . . . , qk)

(
q1 . . . qk pj,2 . . . pj,n aj

)
c′(ps), c ̸= c′ None(

k. . . pj,2 . . . pj,n aj

)
(q1|q2) S

(
c,

(
q1 pj,2 . . . pj,n aj

))
⊕ S

(
c,

(
q2 pj,2 . . . pj,n aj

))
x

(
pj,2 . . . pj,n let x = t1 in aj

)
p as x S

(
c,

(
p pj,2 . . . pj,n let x = t1 in aj

))
This is a bit messy; we will show later that we can first eliminate disjunctions, variables,

and as-patterns in the first column before computing S(c, P ), reducing the definition to the

following:
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compile(tl, P )

1. If P is empty (no rows), return “Non-exhaustive”.

2. Otherwise, if tl is empty, then return the first action in P .

3. Otherwise, let t :: tl be the term list. Simplify the matrix P so that the first
column only consists of constructors and wildcards. There are 3 cases:

(a) If there are no constructors in the first column, return compile(tl, D(P )).

(b) Otherwise, if t = cs(al) for constructor cs, if cs is in the first column, return
compile(al ⊕ tl, S(cs, P )), 1 else return compile(tl, D(P )).

(c) Otherwise, let base be [ ] if all constructors for the ADT occur in the first
column and [ → compile(tl, D(P ))] otherwise. Then construct list ps as
follows: for each constructor cs in the first column, add c(vs)→compile(vs⊕
tl, S(cs, P )), where vs are fresh variables. Finally, construct the pattern
match match t with ps⊕ base end.

Figure 4.2: Compiling pattern matches, given pattern matrix P and term list tl

Pattern pj,1 Row of S(c, P )

c(q1, . . . , qk)

(
q1 . . . qk pj,2 . . . pj,n aj

)
c′(ps), c ̸= c′ None(

k. . . pj,2 . . . pj,n aj

)
The second matrix we need is the default (D) matrix: this gives the result assuming that

t does not match any of the constructors appearing in the first column. We show only the

definition for the simplified first column (i.e. only constructors/wilds), which removes all

constructors:

Pattern pj,1 Row(s) of D(P )

c(ps) None(
pj,2 . . . pj,n aj

)
1The Why3 implementation reverses al (and likewise vs in Step 3c and the q1 . . . qk in the constructor case

for S(c, P )). In the Coq development, there is some additional complexity in reasoning about the reversals.
For simplicity of presentation, we show the non-reversed version.
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With these decompositions, we can define the compile algorithm (Figure 4.2). We demon-

strate the algorithm on the following example that demonstrates both nested and simulta-

neous matching:

match l1 , l2 with
| [ ] , [ ] → x1
| [ ] , → x2
| : : , → x3
| [ ] , : : → x4
end



nil nil x1

cons( , nil) nil x2

cons( , ) x3

nil cons( , ) x4


The first column contains both constructors; the specialized matrices are:

P1 := S(nil, P ) =

 nil x1

cons( , ) x4

 P2 := S(cons, P ) =

 nil nil x2

x3


l1’s constructor is unknown, so applying Step 3c results in the following partial match:

match l1 with
| [ ] → compile( l2 , P1 )
| y1 : : y2 → compile ( [y1; y2; l2], P2 )
end

We focus on the first case. P1 again contains both constructors; the specialization matrices

are P3 := S(nil, P1) =

(
x1

)
and P4 := S(cons, P1) =

(
x4

)
. Step 3c results in the

match:

match l2 with
| [ ] → compile ( [ ] , (x1))
| y3 : : y4 → compile ( [y3; y4], ( x4))
end

Each call to compile can be simplified easily. The first evaluates to x1 by Step 2, while the

second evaluates to x4 by repeated applications of Step 3a. The second case (on P2) is broadly

similar; we omit the details but show the full compiled pattern match in Figure 4.3. Note that

the column-ordered approach of the algorithm ensures that case splitting occurs in the order

of the arguments. Different orders could result in different sized (but semantically equivalent)
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match l1 with
| [ ] → match l2 with

| [ ] → x1
| y3 : : y4 → x4
end

| y1 : : y2 → match y2 with
| [ ] → x2
| y5 : : y6 → x3
end

end

Figure 4.3: Compiled pattern match

matches, and there has been significant research (e.g. [80]) in developing techniques and

heuristics to give small outputs.

We also demonstrate how the algorithm checks exhaustiveness. Suppose we had not in-

cluded the last (x4) case in the original pattern match. Then, P1 (i.e. S(nil, P )) is

(
nil x1

)
,

and the first match again results in compile(l2, P1). Here we are again in Step 3c, but

S(cons, P1) is empty, triggering Step 1.

Now we fill in several key implementation details missing from Figure 4.2. First, we

describe how to remove all non-constructor, non-wildcard patterns from the first column.

We use the following simplify transformation (when matching on term t1). Note that p

represents the rest of the columns in the matrix and ⊕ again represents concatenation.

Row of P Row(s) of simplify(P )(
c(al) p a

) (
c(al) p a

)
(

p a

) (
p a

)
(

(q1|q2) p a

)
simplify

(
q1 p a

)
⊕ simplify

(
q2 p a

)
(
x p a

) (
p let x = t1 in a

)
(
p1 as x p a

)
simplify

(
p1 p let x = t1 in a

)
In effect, this transformation expands the disjunctions into two separate rows and replaces

variables occurring at the outer level with let-bindings in the action column (note that it
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does not recurse inside constructor patterns). Of course, it is inefficient to scan over the

pattern matrix separately to simplify the matrix, again to construct D(P ), and once again

per constructor c to compute S(c, P ). The Why3 implementation combines these into a

single scan; we prove that this is equivalent to the decomposition presented. All our proofs

operate on the decomposed algorithm; it is much easier to reason about the matrices S and

D when assuming that disjunctions and as-patterns (which induce recursion within patterns)

do not appear.2

The only remaining implementation detail concerns how to check in Step 3c that all

constructors for the ADT appear. The Why3 version does this in 2 ways: either the caller

provides a function to retrieve the list of constructors for an ADT or compile uses metadata

from the constructor function symbols (the number of siblings of the constructor). The

former requires context information but is useful for reporting unmatched cases (which we

do not consider), as it can identify all remaining constructors. Why3Sem includes the con-

structor metadata and the appropriate typing rules; we prove that the two approaches are

equivalent in any well-typed context.

4.1.1 Termination

The first difficulty in formalizing compile is proving termination – the function recurses on

matrices S(c, simplify P) and D(simplify P), which are not structurally smaller than input P .

We first consider several natural measure candidates that fail:

• We might hope that the algorithm decreases the total size of P in each step (i.e.,

the sum of the sizes of all patterns in the matrix). Unfortunately, simplify expands

disjunctions, resulting in a larger matrix.

• Instead, we could try to construct a measure that decreases enough when breaking

apart a disjunction to offset the increase due to the new rows. For example. consider

2Another reason our decomposition is helpful is that the single-pass version is not structurally recursive,
in contrast to the definitions of S, D, and simplify presented. We can use Equations and a simple size metric
to define the function, but Coq reasoning is often simpler over structurally recursive functions.
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the measure
∑

r∈P 2|r| – i.e. raise 2 to the power of the size of each row. Since |(p1|p2)| =

1 + |p1|+ |p2|, the size of the row decreases from 21+|p1|+|p2| ∗ rest to (2|p1| + 2|p2|) ∗ rest.

However, while this ensures that |simplify(P )| < |P |, it makes S(c, P ) potentially larger.

Specifically, each wildcard becomes k wildcards, increasing the size of the row by a

factor of 2kc, where | | = c.

• We might then hope to offset this by similarly decreasing our measure more when

breaking apart constructor applications (since S(c, P ) is only computed if c appears

in the first column). However, for any additive decrease in measure (i.e. any k such

that |c(al)| = k +
∑

a∈al |a|), it is easy to show that the multiplicative increase from

the wildcards can be larger.

• Finally, we note that if | | = 0, then 2kc = 1, so the size of S does not increase. But

then |D(P )| = |P | if the first column has no constructors.

We note that the difficult part of finding a termination metric is the interleaving of

expansion (in simplify and the wildcard case in S(c, P )) and contraction (in the constructor

case of S(c, P ) and in D(P )). If there were no disjunctions, the algorithm would clearly

terminate – the pattern matrix size is a decreasing measure as long as the constructor

measure decreases by enough to offset the increase from the additional wildcards (this can

be statically bounded). So a (much less efficient) variant of compile terminates: first expand

all disjunctions, then compile. While it is not completely obvious that this upper bounds

the number of steps of compile, we use this as intuition to design a measure: the sum of

the pattern sizes of the fully expanded matrix (parameterized by a constant representing the

constructor decrease).

More formally, we give the definition of the full expansion of a pattern matrix in Figure

4.4. The difficult case is for constructor patterns: we must expand the entire row of argu-

ments, which involves expanding all patterns in the row and concatenating all the resulting

expansions. We then define a size function | · |n on patterns, pattern-lists, and pattern-

matrices, where n is a parameter describing the extra fuel added to the constructor case:

77



Ep : pat→ list pat

Ep( ) = [ ]

Ep(x) = [ ]

Ep(p|q) = Ep(p)⊕ Ep(q)

Ep(p as x) = Ep(p)

Ep(c(ps)) = ⊕ps′∈Er(ps)[c(ps
′)]

Er : list pat→ list (list pat)

Er([]) = [[]]

Er(p :: ps) =
⊕

p′∈Ep(p),ps′∈Er(ps)

[p′ :: ps′]

EP : list (list pat)→ list (list pat)

EP (P ) =
⊕
r∈P

[Er(r)]

Figure 4.4: Expansion of patterns (Ep), rows (Er), and pattern matrices (EP )

|c(ps)|n = n +
∑

p∈ps |p|n. To give a suitable upper bound, we let m be the largest num-

ber of arguments that any constructor in the matrix P takes. The total amount of added

measure is bounded by len(P ′) ∗m, where len(P ′) is the length (i.e. number of rows) of the

current matrix P ′. Since P ′ might be larger than P (due to simplify), we can upper bound

len(P ′) by len(EP (P )). We let b(P ) = len(EP (P )) ∗m. Thus, the full termination metric

is |EP (P )|b(P )+1. Proving that compile terminates according to this measure involves 4 key

steps:

1. First, we show that simplifying the matrix does not change the full expansion:

EP (simplify(P )) = EP (P ).

2. Then, we show that the measure decreases in the default case: for any n, |EP (D(P ))|n <

|EP (P )|n. This is not too hard to show, as either constructors or wildcards are removed

when constructing D.

3. The most difficult step is to show that the measure decreases in the specialization case.

Formally, we prove that if constructor c appears in the first column of P and takes

k arguments, |EP (S(c, P ))|n + n ≤ |EP (P )|n + len(EP (P )) ∗ k. The proof is quite

tricky, as the definition of Ep for constructors necessitates reasoning about all possible

(nested) expansions. Nevertheless, this allows us to instantiate n with a large enough

value for a total decrease in potential.

4. Finally, since the concrete instantiation of n is (b(P ) + 1) which depends on P (and
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thus changes throughout the algorithm), we prove a monotonicity property: if n ≤ m,

|P |n ≤ |P |m. We also show that b does not decrease: b(D(P )) ≤ b(P ) and b(S(c, P )) ≤

b(P ).

We combine these results to prove that compile terminates. However, none of this was specific

to compile – we effectively proved that any algorithm based on pattern matrix decomposition

terminates via this metric. More sophisticated algorithms [80, 71] follow the same basic

structure but with more optimizations and heuristics (e.g, not always examining the first

column, swapping columns, data structure sharing, etc). Our termination metric should

suffice in these settings with almost identical proof.

4.1.2 Defining compile in Coq

We can define compile with well-founded recursion using the Equations framework. The Coq

definition follows Figure 4.2 closely and has type list (term * vty) → list (list pattern * A)

→ option A, where A is the type of actions (in our case terms or formulas). compile is also

parameterized by functions indicating how to find ADT constructors, how to construct a

pattern match, and how to construct a let-binding for A. The return type represents either

an ill-typed or non-exhaustive pattern match (None) or a successful compilation (Some a).

As discussed above, we include an additional parameter indicating which method to use to

determine if all constructors are present, but we prove the two equivalent for well-typed

arguments. Finally, we include an additional parameter governing the behavior of Step 3b;

see §4.2.3.

To prove properties of such a function, we define several custom induction principles

(the ones generated by Equations are insufficient) that allow us to prove separately that the

property of interest is preserved under simplify, and then assume the matrix is simplified

when proving the cases involving D(P ) and S(c, P ) – this avoids nested induction. In our

approach, proving properties about compile can be decomposed into (1) proving the property

is preserved by simplify (2) proving the needed result for D(P ) for simplified (and well-typed)
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Jal, []KMv = None

Jal, (r, t) :: rsKMv = orep v t Jal, rKR Jal, rsKMv

Figure 4.5: Semantics of pattern-matrix matching (J·KM,v)

P , (3) proving the needed result for S(c, P ) for simplified (and well-typed) P , and (4) proving

each step (1, 2, 3a, 3b, 3c) separately assuming all S and D cases hold; typically 3c is the

only interesting one.

4.2 Properties of Pattern Matching Compilation

4.2.1 Soundness of compile

We want to prove the semantic correctness of compile – a theorem of the form: if compile(tms,

P ) gives term (or formula) t, then t is semantically equal to the original pattern match. To

state this theorem, we first need to define the semantics of matching against a pattern matrix.

We already defined the semantics for pattern matching a single term against a pattern

(match val single or Jp, dKp) and for determining if a pattern-row matches (matches row or

Jps, dsKR) in §3.2.2. We extend this to a pattern matrix (Figure 4.5) in matches matrix

(Jal, P KMv ), which iterates through each row until it finds a match, then evaluates the matched

action under the valuation v extended with the new bindings (note that this reduces to

match rep for a single-column matrix). Finally, we define JtsKTv to be the (heterogeneous)

list generated by JtKtv for each t in ts (recall that JtKtv (term rep – §3.1) is the interpretation

for terms under valuation v). Then the correctness theorem is:

Theorem 4.2.1 (compile correct). Let ts be a list of term * vty, let P be a pattern matrix,

and let v be a valuation. Suppose that ts and P are well-typed in context Γ (subsequently,

Γ will be implicit). Also suppose that there are no variable names in common between the

free variables of ts and the pattern variables of P . Then, if compile ts P = Some tm, then
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JJtsKTv , P KMv = Some JtmKtv.

This theorem says that if compile succeeds and produces a term t, then the pattern match

succeeds and results in a term semantically equivalent to t. The proof is quite complex; we

give a sketch in some detail.

First, we prove that simplify preserves the semantics. This is not trivial, first because

a row that begins with a disjunction becomes multiple rows in the resulting matrix; we

must prove that the semantics of the resulting matrix is equivalent to that of the original

row. Additionally, since simplify transforms variable patterns into let-bindings, this changes

a simultaneous binding into an iterated one, causing problems if variable names overlap.

Consider the following example:

match y , z with
| x , y → f x y
end

The result should be equivalent to f y z. However, since simplify is an iterated let-binding,

it results in let y = z in ( let x = y in f y x), which is semantically equivalent to f z z. To

avoid this, we require the condition on variables names in Theorem 4.2.1 (which is not a

huge burden, as we can always α-convert; see §5.4). Under this condition, we can prove that

simplification does not change the semantics:

Lemma 4.2.1 (simplify match eq). Assume that t :: ts and P have no variable names in

common. Then JJt :: tsKTv , simplify t P KMv = JJt :: tsKTv , P KMv

Next, we must reason about the matrices D(P ) and S(c, P ). It will be helpful to define

the notion that “term t is semantically equivalent to c(al)” (that is, JtKtv = JcKλ(al)), where

c is a constructor in ADT a; we call this predicate tm semantic constr. Then we prove

that, given any term of ADT type a, we can find the constructor c and arg list al such that

tm semantic constr t c al. This is a straightforward application of find constr rep (§3.2.1),

but it gives a nicer abstraction with which we prove several intermediate results that help us
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reason about the matrix decompositions. In all the following, we assume the input matrix

is simplified and well-typed. First, we show that if term t is semantically equal to c(al),

matching t against pattern c(ps) is the same as matching al against ps:

Lemma 4.2.2 (match val single constr row). Suppose tm semantic constr t c al. Then

Jc(ps), JtKtvKp = Jal, psKR.

The proof is straightforward, relying on injectivity and disjointness properties of construc-

tor interpretations. Similarly, we then prove that if tm semantic constr holds of a different

constructor, then the term does not match:

Lemma 4.2.3 (match val single constr nomatch). Suppose c ̸= c’ and tm semantic constr t

c al. Then Jc′(ps), JtKtvKP = None.

Along with some additional lemmas about concatenation of pattern-rows, we now have

all the pieces to prove the D and S cases; we start with the simpler D result. Recall that

D(P ) is intended to represent the remaining pattern match if the term t does not match any

of the constructors in the first column of P . We prove this property in 2 parts: either t has

ADT type and matches a constructor that does not appear in the first column, or t does not

have ADT type. The following lemmas state each such case:

Lemma 4.2.4 (default match eq). Suppose that tm semantic constr t c al but c does not

appear in the first column of pattern matrix P . Then JJt :: tsKTv , P KMv = JJtsKTv , D(P )KMv .

Lemma 4.2.5 (default match eq nonadt). Suppose t does not have ADT type. Then

JJt :: tsKTv , P KMv = JJtsKTv , D(P )KMv .

The proofs are easy; the first follows by induction over the pattern matrix and Lemma

4.2.3, while the second uses the fact that there can be no constructors in the first column of

P by typing.

We prove a similar lemma for the S matrix. Recall that S(c, P ) is intended to represent

the remaining pattern match if the term t matches constructor c. Unlike D, the remaining
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match is not just the rest of the rows; rather, we must first match the arguments of the

c-patterns. The formal statement is:

Lemma 4.2.6 (spec match eq). Suppose tm semantic constr t c al holds. Then

JJt :: tsKTv , P KMv = Jal ⊕ JtsKTv , S(c, P )KMv .

We reason by induction on P . In the case where the first row starts with c(ps), we

decompose the pattern-row matching concatenation, using Lemma 4.2.2 to reason about the

c(ps) match. The case where the first row starts with c′(ps) (c ̸= c′) is similar; we use Lemma

4.2.3. Lastly, in the wildcard case, we prove that matching a row against all wildcards gives

Some ∅.

Finally, we have all the pieces needed for the proof of Theorem 4.2.1. The full proof is

quite complex; we give a sketch of an interesting case.

Proof. We focus on the last inductive case (Step 3 of the algorithm). We want to prove that,

for any v, JJt :: tsKTv , P KMv = Some JtmKtv (it is important that the valuation v is generalized

for induction).

In Step 3a, the first column consists only of wildcards. Thus, we can use Lemmas 4.2.4

and 4.2.5 depending on whether term t has ADT type. We only prove Step 3c; 3b is simpler

and uses many of the same ideas. Since there must be at least one constructor in the first

column of P , t (the first term in the term list) has ADT type. Thus, we can find a constructor

c and arguments al such that tm semantic constr t c al holds. Furthermore, by the definition

of compile, we know that JtmKtv = match rep t (ps⊕ base), where ps and base are defined as

in Figure 4.2. We consider 2 possible cases:

1. Assume c appears in the first column of P . Then, we can split ps into ps1 ⊕ (c(vs)→

compile(vs ⊕ ts)) ⊕ ps2 such that c does not appear in the patterns in ps1 and ps2.
3

Recall that match rep works by iterating over the pattern list until a match succeeds.

3Note that the return type of compile is option A, not A. In reality, there is a monadic bind everywhere,
and if any compile case fails, so does the result. Since we assume the overall result succeeds, all recursive
calls also give Some, so via abuse of notation, we ignore the option type.
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By Lemma 4.2.3, no pattern in ps1 matches t. The first successful match is therefore

against the c(vs) term: we simplify first by invoking Lemma 4.2.2 and then by noting

that since vs are variables, each inner match succeeds. Furthermore, we know that

the resulting valuation is m, where each v in vs maps to the corresponding element

of al. Thus, letting tm1 be such that compile(vs ⊕ ts) = Some tm1 (see previous

footnote), we have that JtmKtv = Jtm1Ktm∪v. By the induction hypothesis, we have

that JJvs⊕ tsKTm∪v, S(c, P )KMm∪v = SomeJtm1Ktm∪v. Finally, we note (after splitting the

concatenation in J·KT ) that JvsKTm∪v = al, since m maps vs→ al. The vs variables are

fresh (and hence do not appear in ts or S(c, P )); therefore JtsKTm∪v = JtsKTv and so the

desired equality holds by Lemma 4.2.6.

2. If c does not appear in the first column of P , things are much simpler. None of the

ps can match by Lemma 4.2.3; therefore JtmKv = match rep t base. Crucially, base

cannot be empty since there is at least one constructor not present in the first column

of P , so there must be a wildcard to match – the complete result follows from Lemma

4.2.4 and the induction hypothesis.

Our work is the first formal, machine-checked proof of such a compilation scheme based

on pattern matrix decomposition. Maranget [80] gives a brief argument for correctness but

omits many details and proves the algorithm correct against a more restrictive syntactic

definition of matching, which we discuss in the following section.

4.2.2 Exhaustiveness Checking

An exhaustiveness check follows as an immediate corollary of Theorem 4.2.1.

Corollary 4.2.1. Under the assumptions of Theorem 4.2.1, if JJtsKTv , P KMv = None, then

compile ts P = None.
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In other words, if there is an interpretation such that the match is semantically non-

exhaustive, then compile will correctly fail (return None). However, this is a fairly weak

specification: compile could always return None and satisfy Theorem 4.2.1 (and hence Corol-

lary 4.2.1).

It is worthwhile to compare and contrast this with existing pen-and-paper proofs of a vir-

tual identical scheme to prove non-exhaustivness by Maranget [79]. Maranget discusses two

versions of exhaustiveness checking: for ML-based call-by-value languages and for Haskell-

like lazy languages. Both theorems are very similar, and can be summarized as, “the exhaus-

tiveness check on pattern matrix P of types tys returns ‘non-exhaustive’ iff there is a value

list vs of type tys such that vs does not match P” (where matching is defined as a syntactic

relation on value-vectors). The difference is that lazy values also include an unknown value

Ω and the exhaustiveness check must be generalized by a disambiguating predicate.

Such a theorem differs from Corollary 4.2.1 in several ways. First, compile checks exhaus-

tiveness with respect to a particular input term list; it can prove that match Nil with | Nil

→ end is exhaustive (though, as we will see in §4.2.3, this turns out to be too permissive in

other contexts). Meanwhile, Maranget’s theorems reason about pattern matrices that match

any possible value list of the correct types, a stricter condition.

Our setting is more general than that of call-by-value matching: Maranget’s simple se-

mantics for ML-style pattern matches are restricted to values whereas compile (and its the-

orems) deal with general terms. In a logic like P-FOLDR with no notion of reduction or

operational semantics, there is similarly no notion of values. Our theorems must allow open

terms, terms containing uninterpreted symbols, and other non-value terms. For example,

suppose we are given a pattern match over uninterpreted function foo(x) : list int:

match ( foo x ) with
| N i l → e1
| Cons x1 x2 → e2
end

We don’t know which case will match, but we know (by the ADT properties of §3.2.1) that

under any intereptation and valuation, JfooKλJxKtv = c(al) for some constructor c – thus,
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we can prove that the match is semantically exhaustive. However, Maranget’s ML match

relation is purely syntactic, defined by a constructor pattern matching a constructor value

iff the constructors are equal and all elements pairwise match. To relate our setting to the

call-by-value one, we must (1) reason about matching semantically rather than syntacti-

cally and therefore (2) quantify over interpretations, without which semantic matching is

undefined. When we equip terms with a fixed interpretation/valuation, this removes the

ambguity of uninterpreted symbols and free variables, allowing us to reason very similarly

as in Maranger’s strict matching proofs. But there is still a crucial difference due to the

additional quantification: there exist interpretations under which foo is interpreted as any

constructor; such ambiguity is not present for values.

We can view lazy pattern matching and its relation to our setting similarly. Here,

Maranget’s proofs require a monotonicity property so that a failing match will continue

to fail as values are partially evaluated; this relies on an ordering relation on values such

that Ω is smaller than all others. In our context, we do not immediately have such an order-

ing, evaluation, or monotonicity notion. Once again, if we reason semantically and quantify

over interpretations, we can recover similar concepts. For example, we can re-interpret the

ordering relation as denoting the existence of an interpretation that produces semantic equal-

ity (e.g. v ≤ w ⇐⇒ ∃I, JvKtI = JwKtI). This satisfies similar properties – all non-constructor

terms are “smaller” than all constructors while different constructors are incomparable – but

it would be very inconvenient to reason about. Therefore, we can view our proofs as broadly

similar to (both of) Maranget’s but significantly simpler when reasoning in a purely logical

setting where the meaning of terms is given by a particular interpretation rather than by

(full or partial) evaluation.

It would be possible to state and prove the reverse direction of Maranget’s theorem

translated to our setting: if compile returns None, there is an interpretation and term that

does not match:

Theorem 4.2.2 (unproved). compile P = None =⇒ ∃I,∃ts, JJtsKTI , P KMI = None.
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Equivalently, this theorem states that if matching succeeds for all interpretations and for

all terms of the correct type, then compile should return Some. We do not formally prove such

a result (soundness is sufficient for our applications), though we do need a weaker version

– if the pattern match is simple (consisting only of wildcards and constructors applied to

variables) and “obviously” exhaustive (either all constructors in an ADT are present or there

is a wildcard), then compile always succeeds. Note that many programs in practice fall into

this category (e.g. many standard functions on lists and trees).

4.2.3 Robustness of compile

As we saw in §2.2, exhaustiveness checking is included in the P-FOLDR type system. We

can now give the precise condition: for any term or formula match t with ps end, compile

[t] ps is Some.4 This induces one additional obligation: compile produces a pattern match

in Step 3c, so we must prove that this match itself passes the exhaustiveness checker. We

prove this by showing that compile produces simple, obviously exhaustive patterns.

Including exhaustiveness checking in the type system causes a larger difficulty: we must

show that every type-preserving function also preserves the exhaustiveness check. Writing

such a theorem is surprisingly difficult; in such functions we modify:

• The term list (e.g. for substitution and rewriting in the proof system)

• The term and pattern types (e.g. for type substitution)

• The pattern match return type (e.g. in eliminate definition, described in §5.2)

• The variables in the pattern matrix (e.g. in α-conversion)

In the end, we need a generic robustness theorem to prove that exhaustiveness checking

still succeeds under any such changes. Of course the conditions cannot be too permissive:

changing the pattern matrix arbitrarily clearly does not preserve exhaustiveness; neither

does changing the types so that a constructor match no longer succeeds. In the end, the

4ps becomes a single-column pattern matrix.
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t h eo r y ExhaustTest
use e xpo r t l i s t . L i s t

funct ion f oo ( ) : i n t =
match ( Cons 1 N i l ) with
| Cons x N i l → x
end

con s t an t y : l i s t i n t

axiom y eq : y = Cons 1 N i l

goal f o o s p e c : match ( Cons 1 N i l ) with
| Cons x N i l → x
end = 1

end

Figure 4.6: Why3 violation of exhaustiveness robustness

latter turns out to be the trickier condition to formalize: we need to ensure that an ADT

type cannot be transformed into a non-ADT type – this would cause a matching constructor

pattern to fail. But we cannot just assume the types (or even ADT types) are the same,

as type substitution can turn a type variable into an ADT type. We define an asymmetric

relation ty rel to encode this – it states that a non-ADT type can be related to an ADT type,

but not the other way around; this relation holds of type substitution. To avoid the first

problem (changing the patterns in the matrix), we require that the two pattern matrices

have the same “shape” - i.e. they are equal up to changing variable names.5 There is a

slight subtlety: the constructor case includes the types for polymorphic type substitution:

we require these types to be pairwise related by ty rel for induction.

It is possible to state such a robustness theorem, and we will do so shortly, but unfortu-

nately the theorem does not hold of compile. The problem occurs in Step 3b, where compile

tests whether the term is a constructor application or not. If we allow the term list to

change arbitrarily, it is possible that an exhaustiveness check that formerly succeeded now

5This is weaker than α-equivalence of patterns (§6.3.3): we ignore variable names entirely rather than
requiring that relations between names (i.e. equality and inequality) are preserved.
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fails. Figure 4.6 shows an example Why3 input that passes the exhaustiveness checker. In the

Why3 IDE, one can interactively apply transformations. If one applies rewrite← y eq, Why3

crashes with a fatal error, indicating that the resulting term fails the exhaustiveness check.

While rewriting in such a “backwards” manner is unlikely in practice, this non-robustness

also rules out potential well-typed optimizations and compiler passes like constant subex-

pression elimination. This is a bug in Why3 (transformations should not result in ill-typed

terms), which we identified and reported.6

One possible fix is simply to omit Step 3b of compile. In fact, this is the common

approach to exhaustiveness checking (e.g. in Coq and OCaml) and avoids this rewriting

issue. However, in compile match, the transformation that compiles all pattern matches to

simple patterns before axiomatizing ADTs (§5.4), Step 3b is very important. For instance,

since simultaneous pattern matching is implemented by matching on tuples, Step 3b is

needed to reduce such matches. Thus, our solution is to parameterize compile by another

flag simpl constr that indicates whether Step 3b is used. In our Coq development, we prove

the soundness of compile for both versions. For exhaustiveness checking, we set simpl constr

to false, so that a robustness theorem (Theorem 4.2.3) holds under all needed settings;

meanwhile, in compile match, simpl constr should be true to make the resulting patterns

as simple as possible for the eventual SMT queries. We discuss the connection between

the two versions of compile in §5.4. Here, we give the full robustness theorem. t fun equiv

is a relation that holds on two function application terms when the functions are equal,

the types are pairwise related by ty rel, and t fun equiv holds recursively pairwise on the

argument lists; otherwise, it holds if two terms are formed by the same constructor – it rules

out the backwards rewriting case above.

Theorem 4.2.3 (compile change tm ps). For any pattern matrices P1 and P2, any term

lists tms1 and tms2, and any type lists tys1 and tys2, suppose the following conditions hold:

• P1 and P2 have the same dimensions and each corresponding pattern pair has equivalent

6https://gitlab.inria.fr/why3/why3/-/issues/903

89

https://gitlab.inria.fr/why3/why3/-/issues/903


“shapes” (but P1 and P2 need not have the same action type),

• tms1 and tms2 have the same length (which equals the length of tys1 and tys2),

• If simpl constr holds, then each corresponding pair of terms in tms1 and tms2 are related

by t fun equiv, and

• Each corresponding pair of types in tys1 and tys2 satisfies ty rel.

Then if exhaustiveness checking succeeds (i.e. compile returns Some) on P1, tms1 and tys1,

then exhaustiveness checking succeeds on P2, tms2, and tys2.

Such a theorem suffices to prove the well-typedness of the needed functions in Why3Sem,

including rewriting (arbitrarily), α-conversion, and type and term substitution. The proof

proceeds much like that of Theorem 4.2.1; we prove the cases for simplify, S, D, and finally

compile.

4.3 Related Work

Pattern matching compilation is a very well-studied problem. Augustsson [11] presents a sim-

ple compilation scheme, introducing (implicity) some of the ideas of the matrix-decomposition

approach though not yet in full generality. Laville [70] and Maranget [78] study lazy pattern

matching; the latter introduces the S and D matrices and gives pen-and-paper proofs of

the main compilation steps from pattern matrices to decision trees. These techniques are

extended by Le Fessant and Maranget [71] and Maranget [80] to develop further heuristics

and optimizations for efficient matching. Maranget [79] studies the problem of exhaustive-

ness checking (and useless clause identification) and proves the matrix-decomposition-based

exhaustiveness check correct.

By contrast, there is very little prior work about verifying such compilation schemes.

Tuerk et al. [107] implement a pattern matching compiler for the HOL proof assistant

(as HOL does not natively include pattern matching) using a generic approach aiming to

produce patterns smaller than the standard decision tree method and closer to the hand-
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written versions. The authors do not prove the compilation correct but extend CakeML’s

[66] proof-producing code generator to compile HOL pattern matches to ML; this results

in a certificate that the compiled pattern match (in CakeML) matches the semantics of the

compiled HOL match. CakeML itself provides a simple verified pattern matching compiler

and exhaustiveness checker that is much more restrictive. For example, CakeML cannot

prove the following exhaustive:

match l with
| [ ] →
| [ x ] →
| x : : t →
end

The CertiCoq [5] verified compiler from Coq to C does not prove anything about pattern

compilation. It assumes that all patterns are already simple, relying on Coq’s front-end to

compile patterns before reification. It is based on the MetaCoq [102] formalization of Coq

in Coq, which makes the same assumption.
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Chapter 5

Verifying a Compiler from P-FOLDR

to First-Order Logic

The bulk of Why3’s translation to FOL consists of five main transformations, each elim-

inating one of the complex structures – recursive functions, inductive predicates, pattern

matching, ADTs, and polymorphism. Why3 also includes additional transformations (e.g.

propositional simplification), which are necessary for improving SMT performance. We do

not consider these additional transformations for this thesis, though they could be proved

sound using similar (though simpler) techniques.

Verifying these transformations is tricky; for each one, we prove soundness and well-

typing – necessary for composing transformations but nontrivial to prove under significant

changes to the context. To the best of our knowledge, none of these transformations has

been previously formally proved sound (other than for polymorphism; see below), but most

are fairly straightforward. The exception, and the main contribution of this chapter, is our

formalization and proof of correctness for the first-order ADT axiomatization, the first such

mechanized proof.

We do not prove the soundness of the elimination of polymorphism (i.e. monomorphiza-

tion). Thus, we compile P-FOLDR to polymorphic first-order logic, which is supported
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by the Alt-Ergo SMT solver. To be compatible with Z3 and CVC5, which support only

many-sorted first-order logic, we would need this additional step. We note that similar

monomorphization functions have been verified in Isabelle [21] and validated in Isabelle for

Boogie [91]. The Why3 monomorphization procedure is based on a technique of Blanchette

et al. [20] and it would be possible to prove its soundness in Coq using our methods.

5.1 A Framework for Proving Soundness

While the transformations vary, the soundness proofs broadly follow a similar structure.

Given a transformation, we want to prove that if Γ′,∆′ ⊨ g′, then Γ,∆ ⊨ g (where primes

represent the transformation result). That is, we want to prove that for every full interpre-

tation I over Γ, if I ⊨ ∆, then I ⊨ g. Then, we construct interpretation I ′ over Γ′, and we

must show the following:

Property 5.1.1. I ′ is a full interpretation for Γ′.

Property 5.1.2. If I ⊨ ∆, then I ′ ⊨ ∆′.

Property 5.1.3. If I ′ ⊨ g′, then I ⊨ g.

From this framework, different types of transformations induce different obligations:

• If the only change to Γ is replacing concrete definitions with abstract ones (e.g. elim-

inating recursive functions and inductive predicates), I ′ = I and showing that I is a

full interpretation in the new context is not hard.

• If the only change to ∆ is adding new axioms (e.g. also for eliminating recursive

functions and inductive predicates), then it suffices to prove these axioms valid to

prove Property 5.1.2.

• If the transformation is a rewrite over terms and formulas (e.g. compiling pattern

matches, parts of ADT axiomatization and monomorphization), then Γ′ = Γ and
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funct ion f a c t ( n : nat )
: nat =
match n with
| O→ S O
| S n ’ → n ∗ f a c t n ’
end

funct ion f a c t nat : nat

axiom f a c t ’ d e f : ∀ n : nat .
match n with
| O→ f a c t n = S O
| S n ’ →

f a c t n = n ∗ f a c t n ’
end

Figure 5.1: Why3 definition and result of eliminate definition on the factorial function

I ′ = I. It suffices to prove semantic equivalence of the rewrite. Equivalence is crucial;

Properties 5.1.2 and 5.1.3 require both directions of the implication to hold.

• Otherwise, under more involved changes to the context (e.g. ADT axiomatization,

monomorphization), we must prove these 3 steps in full generality.

The other main task is to prove typing. Generally, the most difficult part is proving Γ′ well-

typed. We must also prove any added (or transformed) axioms in ∆′ well-typed, and if the

transformation is a rewrite, we must prove that the rewrite preserves typing, free variables,

type variables, and function/predicate symbols appearing in a term – these are necessary to

satisfy the typing rules for recursive functions and predicates.

5.2 Eliminating Recursive Functions

Recursive (and non-recursive) functions are replaced with an unfolding axiom in the

eliminate definition transformation. Figure 5.1 shows the axiom produced for the factorial

function over a Coq-style nat. Note that this axiom is not written in the obvious way (simply

setting the function equal to the body), but rather the equality is pushed through match,

if, and let. When the pattern matches are eliminated, this gives terms less likely to lead

to matching loops in SMT solvers, as there is more “guidance” on how to instantiate the

quantifier (e.g. fact (S n’) requires the instantiated term to be a successor, while fact n allows

any natural number) – see [72] for more discussion.
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This is a very simple transformation; indeed it is almost equivalent to the specification

we proved about recursive functions (§3.2.4). We prove that this is equivalent to the “nat-

ural” axiom (without the equality pushed inside match), showing completeness as well as

soundness. There is a subtle corner case: pattern matching exhaustiveness (the fact that

match rep never reaches the default case) is required to prove completeness. Thus, though

pattern matching exhaustiveness is not needed for the soundness of P-FOLDR or the trans-

formations (since all types are inhabited, it is OK to return a default element if the matching

fails), it is still useful in showing stronger properties.

As discussed in §5.1, since nothing was added to the context, we set I ′ = I and show

that I is still a full interpretation for Γ′; this follows from the fact that concrete definitions

have been removed but not added. Showing Property 5.1.2 requires us first to prove that the

added axioms are valid; this follows from the equivalence discussed. To prove the remainder

of Properties 5.1.2 and 5.1.3, we must show that the meaning of terms and formulas does not

change under Γ′ – this follows from the fact that no ADTs were added (or else match rep is

not preserved) and the generic equivalence lemmas of §3.2.3. Of course this would not work

if we added, rather than removed, concrete definitions.

Finally, we must show that the resulting context is well-typed. If we remove all the

concrete definitions and replace them with identical abstract symbols, this is not hard.

However, things are not so simple because we are allowed to axiomatize a subset of recursive

functions in a mutual block. To ensure that the result is still well-typed, we need to prove

termination, which we do by finding the new set of decreasing indices and proving that such

a calculation always succeeds on a subset of a terminating mutual block.

5.3 Axiomatizing Inductive Predicates

Inductive predicates are replaced with axioms asserting that the constructors hold and

that the inversion principle is true (eliminate inductive in Why3). Figure 5.2 shows the
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i nduct i ve even ( n : nat ) =
| EvenO : even O
| EvenS : ∀ m: nat .

even m→ even (S (S m) )

pred icate even nat

axiom EvenO : even (O)
axiom EvenS : ∀ m: nat .

even (m) → even (S(S(m) ) )
axiom e v e n i n v e r s i o n :
∀ z : nat . even ( z ) →
( z = O ∨ ∃ m: nat . even (m) ∧ z

= S(S(m) ) )

Figure 5.2: even inductive predicate and result of eliminate inductive

example for the even inductive predicate (again over a Coq-style nat).

Here, proving Γ′ well-typed is easy since all inductive predicates are removed. The rest

of the proof is similar to that of eliminate definition, but the difficulty lies in proving the

axioms valid. The constructor axioms essentially follow from the specification of inductive

predicates (§3.2.5). But the inversion axiom is surprisingly difficult to prove sound. Here,

we give a proof sketch for even; the general case is broadly similar.

By the least predicate property of even, for any P , if (1) P (0) and (2) ∀n, P (n) →

P (S(S(n))) hold, then ∀x, even x→ P (x) holds. We choose P (x) to be:

P (x) := (x = 0 ∨ ∃n, even n ∧ x = S(S(n)))

and we must show that (1) and (2) hold. Clearly P (0) holds. (2) is more interesting. Given

n, assume that P (n) holds. We want to show that P (S(S(n))) holds. It suffices to find an

n′ such that even n′ and S(S(n)) = S(S(n′)); thus, let n′ be n. To prove that even(n) holds,

we use the fact that, since even is an inductive predicate, its constructors are true.1 Recall

that by assumption, P (n) holds; thus, we must show that P (n) implies even(n).2 We have

two cases: if n = 0, the result follows from the first even constructor; if n = S(S(y)) and

even(y) holds, then we substitute and use the second even constructor.

1In the general case, we use the fact that under a full interpretation, the constructors of all inductive
predicates are true.

2In the general case, we prove this implication holds by positivity.
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5.4 Compiling Pattern Matches

The transformation that eliminates complex and nested patterns, compile match, walks over

the given term or formula and calls compile (Chapter 4) on each pattern match. It is a rewrite

transformation; as we discussed in §5.1, we must prove the semantics equivalent and prove

several typing properties (including preservation of free variables, type variables, and used

function/predicate symbols). The most interesting proof is for the semantics. The result

follows from Theorem 4.2.1, the compile correctness theorem, but recall that this theorem

says that if compile gives Some, then the result is semantically equivalent. Thus, we must

show that all calls to compile succeed (give Some). We know by typing that all pattern

matches are exhaustive, but after changing the exhaustiveness checker to satisfy robustness

(§4.2.3), the exhaustiveness check and the version of compile used in compile match differ on

the value of simpl constr. Therefore, we show a correspondence between the two versions of

compile, which proves that our new exhaustiveness check (with simpl constr set to false) is

strictly more restrictive than the old one:

Theorem 5.4.1 (compile bare simpl constr). Given pattern matrix P and term lists tms1

and tms2 such that everything is well-typed, if the exhaustiveness check succeeds on tms1 and

P when simpl constr is false, then the exhaustiveness check succeeds on tms2 and P when

simpl constr is true.

The proof follows by induction, where the interesting case unsurprisingly occurs when

the matched term is a constructor and thus one check is in Step 3b (of Figure 4.2), while

the other is in Step 3c.3 Here, we use the stronger exhaustiveness check to know that every

constructor compilation (using S(c, P )) must succeed; therefore, the particular one needed

also succeeds. This is not obvious: the two checks operate over different arguments – adding

fresh variables and the constructor application arguments, respectively. For this reason,

Theorem 5.4.1 must be general enough to allow different (but still well-typed) term lists.

3The simplify case is also surprisingly nontrivial and relies on robustness properties – this is the reason
we need the t fun equiv condition in Theorem 4.2.3.
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The full semantic equivalence result for compile match requires an additional α-conversion

to satisfy the unique-name hypothesis of Theorem 4.2.1.

For our purposes, semantic equivalence is not quite enough: we need more information

about the result of compile match for the axiomatization of ADTs (§5.5). Namely, we show

that the resulting pattern matches are simple, obviously exhaustive, and organized in a

particular way: each pattern match consists of a nonempty list of unique constructors applied

to variables, optionally followed by a wildcard. This is a strong condition, and gives us a

precise characterization of the resulting structure of the terms. As an implicit corollary, this

proves that every (well-typed) P-FOLDR term, no matter how sophisticated the pattern

match, can be reduced to an equivalent term consisting only of these very restricted matches.

5.5 A Sound First-Order Axiomatization of ADTs

Many SMT solvers do not support algebraic data types with an inductive set of constructors.

When translating a language (Why3) or logic (P-FOLDR) with ADTs to SMT formulas, one

must eliminate the ADTs and replace them with axiomatized abstract functions.4 Here we

prove sound the particular axiomatization that Why3 uses (eliminate algebraic), though we

will note that our approach would extend to other first-order representations.

5.5.1 Axiomatizing ADTs

Figure 5.3 shows an example of an ADT-related goal in Why3: it defines the list datatype,

the length function and a proof goal involving these definitions. §5.2 showed how to axiom-

atize recursive definitions; the next step is to eliminate the recursive types and pattern

matching, a significantly more complex transformation. Once compile match has already

reduced everything to simple patterns, the elimination of an ADT can be viewed as a 2-step

process (though both happen simultaneously): first, the type and constructors are replaced

4Some SMT solvers do support ADT theories, but internally, they perform a similar first-order axioma-
tization.
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type l i s t ’ a = N i l | Cons ’ a ( l i s t ’ a )

funct ion l e n g t h ( l : l i s t ’ a ) : i n t =
match l with
| N i l → 0
| Cons r → 1 + l e ng t h r
end

goal f oo : ∀ l : l i s t ’ a .
l e n g t h (match l with | N i l → N i l | Cons x t → t end ) ≤ l e n g t h l

Figure 5.3: ADT example in Why3

by abstract symbols while new abstract function symbols and axioms are introduced; sec-

ond, all pattern matches are replaced with expressions using the newly introduced function

symbols.

Figure 5.4 shows the possible outputs to the transformation; we describe each part in

turn. Projections describe how to extract the arguments of a constructor; there is a projection

symbol and axiom for each argument of each constructor. The selector function axiomatizes

(simple) pattern matches, returning the argument corresponding to the matched construc-

tor. The indexer function describes which constructor an ADT instance belongs to. The

disjointness axiom asserts that constructors are distinct, and the inversion axiom states that

all elements of ADT type are equal to a constructor applied to the corresponding arguments

(expressed via projections). We note that Why3 does not generate all of these axioms every

time, and many are user-configurable or only required in certain situations. For example, the

disjointness axiom follows from the indexer axioms, so it is only generated if the indexers are

not. Nevertheless, we will prove all the generated axioms sound to cover all possible cases.

The second part of the transformation, the elimination of pattern matches, is less stan-

dard. Here, there are two cases: if the pattern match occurs in a term (as with the goal foo),

the match is transformed into an expression using the selector function, with projections

retrieving the appropriate constructor arguments (i.e. the variables in the pattern match).

If the pattern match occurs in a formula (as with length def), the expression match t with
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type l i s t ’ a

funct ion N i l : l i s t ’ a
funct ion Cons ’ a ( l i s t ’ a ) : l i s t ’ a

(∗ P r o j e c t i o n s ∗)
funct ion c o n s p r o j 1 : l i s t ’ a→ ’ a
funct ion c o n s p r o j 2 : l i s t ’ a→ l i s t ’ a
axiom c o n s p r o j 1 d e f : ∀ u1 u2 . c o n s p r o j 1 ( Cons u1 u2 ) = u1
axiom c o n s p r o j 2 d e f : ∀ u1 u2 . c o n s p r o j 2 ( Cons u1 u2 ) = u2

(∗ S e l e c t o r ∗)
funct ion ma t c h l i s t : l i s t ’ a→ ’ b→ ’ b→ ’ b
axiom ma t c h l i s t c o n s : ∀ z1 z2 u1 u2 .

m a t c h l i s t ( Cons u1 u2 ) z1 z2 = z1
axiom ma t c h l i s t n i l : ∀ z1 z2 . m a t c h l i s t N i l z1 z2 = z2

(∗ I n d e x e r ∗)
funct ion i n d e x l i s t : l i s t ’ a→ i n t
axiom i n d e x l i s t c o n s : ∀ u1 u2 . i n d e x l i s t ( Cons u1 u2 ) = 0
axiom i n d e x l i s t n i l : i n d e x l i s t N i l = 1

(∗ D i s j o i n t n e s s ∗)
axiom c o n s n i l : ∀ u1 u2 . Cons u1 u2 <> N i l

(∗ I n v e r s i o n ∗)
axiom l i s t i n v e r s i o n : ∀ u .

u = Cons ( c o n s p r o j 1 u ) ( c o n s p r o j 2 u ) ∨ u = N i l

(∗ l e n g t h axiom ∗)
axiom l e n g t h d e f : ∀ l . ( l = N i l → l e n g t h l = 0) ∧

(∀ u1 u2 . l = Cons u1 u2→ l e n g t h l = 1 + l e ng t h u2 )

goal f oo : ∀ l .
l e n g t h ( m a t c h l i s t l N i l ( c o n s p r o j 2 l ) ) ≤ l e n g t h l

Figure 5.4: Result of axiomatizing ADTs and eliminating pattern matching
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| c(a) → f ... end, becomes either ((∀ a. t = c(a) → f) ∧ ...) or ((∃ a, t = c(a) ∧ f) ∨ ... )

depending on the polarity of the formula in which the pattern match appears.5

Of course, this is not the only possible ADT axiomatization, and different tools make

slightly different choices. Dafny has a broadly similar encoding [72], with projections and

indexers, as well as axioms defining an order on ADTs.6 Sniper [23, 22], a tool to transform

Coq goals into first-order SMT goals (see §5.6), generates injectivity, disjointness, and inver-

sion axioms. Other first-order axiomatizations of ADTs for SMT solvers [15, 100] provide isf

functions indicating to which constructor the element belongs (replacing the indexers) and

may also include non-circularity axioms (e.g. that l ̸= Cons x l) .

Methods for eliminating pattern matching differ more widely. Why3, as we have seen,

uses a selector axiom in some cases and directly generates formulas in the others. Dafny turns

pattern matches into nested if-expressions, with one case per constructor (in some sense this

can be seen as an “eager” approach compared to Why3’s “lazy” approach). Sniper also does

not include a selector axiom; it uses Coq to automatically simplify the pattern match per

constructor.

5.5.2 Proving Soundness

We again follow the framework of §5.1. This time, the modified interpretation I ′ is quite

difficult to define, as we must decide how to interpret the newly added function symbols.7

Meanwhile, unlike in previous transformations, the added axioms are not necessarily true in

every interpretation, but we must show that they are true under I ′. It is also tricky to prove

that pattern matching elimination, a rewriting step, preserves the semantics of term rep

and formula rep – unlike with compile match, the context Γ and the defined ADTs change,

5The two versions are logically equivalent, as we show, but the polarity-dependent representations mean
that goals are universally quantified while hypotheses are existentially quantified.

6Dafny needs an explicit ordering to guard recursive function calls. In Why3’s core logic, the only recursion
is through (lexicographic) structural inclusion, which is checked statically. In Dafny, some termination
conditions are only checked at verification time (see §7.5).

7Our version of eliminate algebraic is parameterized by a predicate denoting which mutual ADTs to keep
(for instance, one may want to preserve monomorphic enumeration types). In this chapter, we assume all
types are being eliminated to simplify the presentation.
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Def in i t i on p r o j i n t e r p {m: mut adt } {a : a l g d a t a t y p e }
( c : funsym ) ( p : funsym ) ( i : nat )
(Hn : i <? l e n g t h ( s a r g s c ) )
( f n t h : nth i ( p r o j e c t i o n s ym s badnames c ) i d f s = p )
( a l : a r g l i s t p . . . ) :=
(∗ Cast head o f a l to [ a d t r e p ] ∗)
l e t x := p r o j a r g s e q p a l . . . i n
l e t ( c1 , a l 1 ) := f i n d c o n s t r r e p m a x i n
match f unsym eq dec c c1 with (∗ check i f c = c1 ∗)
| l e f t Heq⇒ dom cast ( . . . ) ( hnth i a l 1 ) (∗ nth e l t o f a l 1 ∗)
| r i g h t Hneq⇒ f un s gamma val id pd p f f s r t s a r g s (∗ d e f a u l t ∗)
end .

Figure 5.5: Interpretation of projection symbols

requiring specialized reasoning. In the following sections, we show the construction of I ′,

briefly discuss the proof that I ′ satisfies the axioms, and sketch the semantic preservation

proof for the rewriting step; we complete the soundness proof as described in §5.1.

Defining the Interpretation

We are given a full interpretation I and ADT a. Since I is full, it correctly interprets a as

the underlying W-type (though we only need the properties of §3.2.1).

Projection symbols are intended to represent extracting a component from the construc-

tor arguments. We can give an interpretation as follows: given the ith projection symbol

p of constructor c and semantic arguments al (i.e. a heterogeneous list of elements of the

interpretations of the argument types of p), we know that the first type argument of p must

be a, so the first (only) element of al has type JaKτ (here we ignore the polymorphic type

arguments for simplicity) – call this element x. Therefore, find constr rep gives c1 and al1

such that x = Jc1Kλ(al1). If c = c1, then the interpretation returns the ith argument of

al1; otherwise, it returns some default argument. The Coq definition follows this reasoning

exactly, with some additional dependent typing obligations. We show a simplified version in

Figure 5.5, omitting some full definitions and arguments.

Interpreting the indexer axioms is similar. Given indexer semantic arguments al, we
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Def in i t i on i n d e x e r i n t e r p {m a} ( a l : a r g l i s t . . . ) :=
(∗ Cast head o f a l to [ a d t r e p ] ∗)
l e t x := i n d e x e r a r g s e q a a l . . . i n
l e t ( c1 , ) := f i n d c o n s t r r e p m a x i n
(∗ Find i ndex o f c1 i n a ’ s c o n s t r u c t o r l i s t ∗)
dom cast . . . (Z . o f n a t ( i nd ex c1 ( a d t c o n s t r l i s t a ) ) ) .

Figure 5.6: Interpretation of indexer symbols

Def in i t i on s e l e c t o r i n t e r p {m a} ( a l : a r g l i s t . . . ) :=
l e t c s l := ( a d t c o n s t r l i s t a ) i n
(∗Get [ a d t r e p ] and r ema in i ng [ a r g l i s t ] ∗)
l e t ( x , a l 2 ) := s e l e c t o r a r g s e q a a l . . . i n
l e t ( c1 , ) := f i n d c o n s t r r e p m a x i n
(∗ Find i ndex o f c1 i n a ’ s c o n s t r u c t o r l i s t ∗)
l e t i d x := index c1 c s l i n
(∗ Find c o r r e s p ond i n g e l t o f a l 2 ∗)
dom cast . . . ( hnth i d x a l 2 ) .

Figure 5.7: Interpretation of selector symbols

again know that the first (only) element of al is an ADT type, find constr rep again gives the

corresponding constructor c, and the interpretation simply returns the index of c in the list

of a’s constructors. We show the simplified Coq representation in Figure 5.6.

The selector is a bit more complicated. This time, the selector symbol for ADT a takes

in n + 1 arguments, where n is the number of constructors of a (there are additional com-

plications due to the fresh type constants; again we omit this for simplicity). Given selector

semantic arguments al, we can again show that the first element of al is an ADT type and

use find constr rep to get the constructor c (the arguments are irrelevant here). Then, we

find the index i of c within a’s constructor argument list and return the ith argument of al

– this encodes the idea that the selector should return its (i+ 1)st argument when called on

the ith constructor. Figure 5.7 shows the simplified definition.

We note that this approach extends to any first-order axiomatization we might want

to give. For example, interpretations for isf predicates which determine if an ADT element

belongs to a given constructor would be almost identical to those of indexers but would return
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a boolean rather than the integer index. More interestingly, we could use a similar approach

to interpret Dafny’s well-foundedness axioms (e.g. l < x :: l). Rather than find constr rep, the

interpretation would use the well-founded relation adt smaller (§3.2.4) that denotes semantic

structural inclusion and which we used to prove the well-foundedness of recursive functions.

We now construct I ′ as the interpretation that uses the appropriate definitions for all

newly added function symbols, keeping everything else the same (including the type inter-

pretation). It is somewhat tedious to show that this is unambiguous; we rely on certain

syntactic constraints to ensure that the newly generated function symbols do not overlap

with any others, for example by ending the name of each class of added axiom with a different

suffix.

Proving that the added axioms are satisfied by I ′ is quite straightforward (with some

occasional complications due to dependent types) and only relies on properties of constr rep.

For example, to prove the inversion axiom satisfied by I ′, find constr rep identifies the input’s

constructor c, then we prove the clause in the disjunction corresponding to c by unfolding

the definitions of the projection interpretations and relying on injectivity and disjointness

of constr rep. The disjointness axiom is even easier; it follows almost immediately from the

disjointness of constr rep.

Eliminating Pattern Matches

Proving the correctness of the pattern matching elimination (called rewriteT/rewriteF in

Why3) is quite difficult, requiring simultaneous reasoning about two contexts (the old context

Γ, and the new, ADT-less context Γ′) and two interpretations (I over Γ and I ′ over Γ′).

We give a brief sketch of an interesting case in the proof. We consider the term pat-

tern matching case, where match t with | ... c(vs) → e ... | → d end is rewritten into (

match foo t ... ( let vs := projs t in e) ... d ... ) where the (i+1)st argument of match foo

is an iterated let expression binding vs to the projections if the ith constructor c appears

in the match as c(vs) and is d otherwise. Note that this rewriting relies on the fact that
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compile match has already been run and thus all patterns are simple. This is extremely

helpful for the proof; we can reason about pattern matching largely syntactically rather

than by unfolding the (recursive) definition of match val single. In particular, on matched

term t, if tm semantic constr t c al holds (§4.2.1), we prove that if c(vs)→ e appears in the

pattern match, then match rep evaluates to JeKtvs→al (and otherwise match rep evaluates to

JdKt). These results crucially rely on properties of compile match: each constructor appears

at most once in the match, constructors are only applied to variables, and all matches are

exhaustive.

Therefore, there are two cases. If tm semantic constr t c al holds for c(vs) → e in the

pattern match, then the match expression evaluates to JeKtvs→al. The match foo expression,

according to selector interp, returns the argument corresponding to constructor c: the iter-

ated let-binding let v1 = proj1 t in ... let vn = projn t in e, where vs=[v1; ... ; vn]. The

equivalence follows by unfolding proj interp and by the fact that the vs are fresh variables.

Otherwise, if tm semantic constr t c′ al holds for c′ not in the match, the reasoning is similar:

we prove that both expressions evaluate to JdKt.

As expected, we also need a variety of results about the typing of rewriteT/F. These are

trickier than for compile match, since we must again reason in two different contexts with

different datatype definitions and declared function symbols. We prove the preservation of

well-typing, free variables, type variables, and function/predicate symbol occurrences. A key

complication is that even the purely syntactic results (e.g. free variables) rely on well-typing,

since as we have seen, rewriteT relies on exhaustiveness and simple-pattern assumptions. For

example, if there is a constructor not appearing in the pattern match, rewriteT assumes a

wildcard pattern is present.8

Proving that I ′ is a full interpretation is now straightforward. We note that elimi-

nate algebraic can only be run after eliminate definition (enforced by Why3) or else the re-

sulting terms are ill-typed (we can no longer prove that recursive functions terminate). We

8If not, the Why3 version throws an exception; our version returns some default value.

105



also require that eliminate inductive has already removed all inductive predicates; this is not

strictly necessary for the proofs, but it prevents us from having to reason about how eliminat-

ing pattern matches affects positivity checks. This ordering of transformations is consistent

among the drivers9 for all standard SMT solvers. However, it is not the case that all def-

initions are eliminated: non-recursive functions and predicates may still be in the context,

and rewriteT and rewriteF will also eliminate their pattern matches. Thus, to show that I ′

is full for Γ′, we show that the rewritten non-recursive functions and predicates still satisfy

their semantic property (i.e. they are equal to their unfolding) – this follows easily from the

semantic equivalence of rewriteT/F.

Finally, we complete the proof of soundness as described in §5.1. We proved Properties

5.1.1 and 5.1.3 (a straightforward application of the semantic equivalence of rewriteF). We

almost proved Property 5.1.2; however, rewriteF is also run on the newly added axioms. The

last piece is to show that on formulas without pattern matches or constructor applications,

rewriteF has no semantic or typing effect.10 Note again that we needed the semantic equiv-

alence (not just soundness) of rewriteF, which is applied in both the hypotheses and the

goal.

5.6 Related Work

ADT Axiomatization First-order axiomatizations of ADTs are common to support SMT

theories based on ADTs [15, 100] as well as in SMT-based verification tools that include

higher-level reasoning support (e.g. Dafny [72]). Other tools (e.g. Viper[77] and Gobra

[112]) include ADTs as essentially syntactic sugar for the derived axioms; these tools do not

include any complex pattern matching.

However, there is very little work on proving soundness of such axiomatizations. Sniper

[23, 22] is a tool that turns certain Coq goals into FOL formulas to enable use of SMT solvers.

9Why3 specifies which transformations are run for a solver via driver files.
10Unfortunately, they are not syntactically equal because of the polarity map.
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It has a very similar set of transformations: eliminating recursive functions, axiomatizing

ADTs, and eliminating pattern matches (note that patterns are already simple from Coq’s

built-in pattern matching compilation). This approach is certifying : it consists of tactics

that generate the resulting Coq definitions and assertions (by reifying to MetaCoq) and

then proof scripts that prove the assertions hold. Such proofs are generally quite simple,

since one can use Coq’s built-in mechanisms for simplifying pattern matches, performing

case analysis on inductive types, and doing induction. Such an approach is better suited for

Coq but would not extend to SMT-based systems like Why3 or Dafny that cannot reason

about ADTs except via axiomatization and translation to SMT. Our methods also prove

once and for all that the ADT axiomatization is sound and succeeds on well-typed inputs;

tactic-based approaches like Sniper cannot provide formal guarantees that the translation or

generated proof scripts succeed.

Compilation to Many-Sorted Logic Though we do not prove anything about monomor-

phization, we note that unlike the other transformations, there has been significant work on

both translating polymorphic logic to many-sorted FOL to build program verifiers as well as

on proving such schemes correct (formally and informally). Early work included the encod-

ing of Couchot and Lescuyer [39] in an older version of Why3 as well as Boogie’s encoding of

higher-rank polymorphism (more expressive than Why3) into a guard-based approach and

an approach based on passing type arguments to functions [73]. Bobot and Paskevich [25]

report on a subsequent version of Why3’s encoding, focusing on the case where one wants to

preserve some specific sorts (e.g. ints) for SMT solvers. The current Why3 implementation

is based on the “featherweight tags” encoding of Blanchette et al. [20]; this is just one of

many encodings presented and proved sound in the process of developing Sledgehammer.

Verified encodings include those of Blanchette et al. [21] and Parthasarathy et al. [91] in

their formal validation of Boogie.
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Chapter 6

Foundational Why3: Towards a Why3

Coq API

Why3 is implemented in OCaml. It connects to front-ends such as Frama-C and EasyCrypt

through an OCaml API and connects to back-end solvers – SMT solvers such as Alt-Ergo and

Z3 as well as proof assistants like Coq – by printing the transformed Why3 proof tasks to a file

to pass to the appropriate solver. In this chapter we present Foundational Why3, a Coq-based

alternative that can connect to our formalization of P-FOLDR and its compilation to FOL

to provide formal soundness guarantees. Foundational Why3 can run via Coq’s extraction

to OCaml, connecting to Frama-C and EasyCrypt and to SMT solvers through (almost)

exactly the same OCaml APIs as original Why3. But it can also run inside Coq using the

vm compute mechanism. This both provides a seamless connection to Coq for subgoals to be

proved interactively and, if extended with a method to call SMT solvers within Coq, would

enable creation of IVL-based verifiers run entirely within a proof assistant.

In the previous chapters, we explored and mechanized the theoretical foundations of P-

FOLDR and its compilation to FOL; here, we focus on the problem of creating a practical IVL

implementation within a proof assistant. We describe the system we have built, including

the many design decisions we made. We present a lightweight design pattern enabling us
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to implement and verify stateful, exception-throwing OCaml APIs in Coq and use this to

implement parts of the Why3 OCaml API in Coq. Finally, we discuss how to connect this

implementation to our semantics and compiler (though we do not complete all the proofs;

we demonstrate on stateful substitution and the eliminate let transformation and describe

how this could be done for the rest of the transformations).

The compilation we discussed in Chapter 5 is fully computable within Coq, but it is

not suitable for use as a real-world IVL. Our core syntax ignores any data without logical

meaning. This is ideal for proofs, as our soundness reasoning is not polluted with unnecessary

information; however, the existing Why3 OCaml implementation (which we will refer to as

Why3-O) contains a significantly richer structure, including metadata for error messages,

user-customizable behavior, and SMT-related data (e.g. triggers for quantifiers). Moreover,

there are several key differences between our purely functional core semantics and compiler

and the mostly functional (but impure) Why3 implementation; we cannot directly test our

compiler against Why3 test suites and clients.

6.1 Design Goals and Decisions

First, we must determine what exactly a verified Why3 implementation should entail and

how it should relate to the existing unverified tool. Figure 6.1 presents an overview of

Why3-O’s architecture. An external client starts by calling the Why3 logic API – this

client could be the parser (if the user writes a Why3 file by hand), a tool using Why3 as

a back-end (e.g. EasyCrypt or Frama-C), or the WhyML verification condition generator.

This API includes facilities for constructing identifiers, types, patterns, terms, formulas,

definitions, tasks, and theories, ensuring that only well-typed AST nodes can be created. If

the typechecking succeeds, the API has generated a theory AST node, which split theory will

split into the constituent tasks (we implemented a simpler version of this in §3.4). Each task
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Parser Client (e.g. EasyCrypt) WhyML VCGen Driver+User

Type-Safe API

Theory AST

Task 1 ... Task n Transformations

SMT, Coq, etc

Selects

Calls

Generates

split theory

Outputs

Figure 6.1: Simplified overview of Why3 IVL architecture

then undergoes a series of transformations as selected by a driver file for a particular solver1

until it lies in the subset of P-FOLDR supported by that solver. Finally, Why3 prints the

AST to a file, which it gives to the solver in question.

Verifying all of Why3 is infeasible and would include reasoning about many components

that do not directly relate to the soundness of the logic compilation. We aim to produce a

verified yet realistic IVL with the following design goals:

• Our priority is to develop a practical IVL implementation executable within Coq that

can connect to our soundness proofs to enable IVL-based verification for foundational

tools (e.g. VST).

• As a secondary goal, we would like our implementation to extract to OCaml and

interoperate with existing Why3 tools and test suites. This serves as evidence that

our verified subset is extensive enough to encompass real proof goals and practical

1This is a simplification; the user can also specify transformations to be applied, and Why3 allows proofs
to be replayed to apply a specified series of transformations – for our purposes, it is enough that some input
specifies which transformations should be run.
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for real-world use. It would allow users of tools like EasyCrypt and Frama-C to use

Foundational Why3 without changing their workflow

• When possible, we want both implementations to be efficient and idiomatic. However,

we prioritize the Coq version when these goals conflict.

We identify two possible paths to these goals. First, we could extend our compiler

implementation with some additional data (e.g. triggers for quantifiers) and generate an

OCaml version using Coq’s native extraction functionality. We could then link this extracted

OCaml code with a hand-written parser in the front-end and a method to output SMT

formulas in the back-end, producing an executable that would compile Why3-like tasks (or

theories, if we write a split theory function) into SMT formulas. This is the same basic

approach that CompCert takes for compiling C programs.

This would give us the freedom to implement the AST and transformations however

we want, and it would allow us to directly use our existing compiler implementation and

proofs (with a suitable parser generating our core syntax). However, there are a number of

drawbacks. This would require significant duplication of Why3’s front-end and back-end.

Additionally, our formalization was defined with verification in mind, and thus it makes

different tradeoffs between efficiency and ease of reasoning than a real-world implementation

would. Finally, this fails to satisfy the above goals, as it would not be compatible with

existing Why3 tools and testing frameworks.

We choose an alternative approach: we identify certain parts of the Why3 pipeline and

implement those in Coq, making an effort to remain as compatible with Why3-O as possible.

We focus only on the soundness-critical path – the type-safe API and the transformations,

using existing Why3 OCaml code for the rest of the pipeline.

This design has numerous potential benefits, including the ability to verify parts of Why3

incrementally, but we must resolve the many differences between Why3-O and our core

syntax and compiler. These differences fall into two categories: some are simply design

choices while other involve fundamental incompatibilities between Coq and OCaml. In §6.2,
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type pa t t e r n = {
pat node : p a t t e r n node ;
p a t v a r s : Svs . t ;
p a t t y : t y ;

}
and pa t t e r n node =
| Pwi ld
| Pvar of vsymbol
| Papp of l s ymbo l ∗ pa t t e r n l i s t
| Por of pa t t e r n ∗ pa t t e r n
| Pas of pa t t e r n ∗ vsymbol

Figure 6.2: Definition of patterns in Why3

we show how we can partially resolve these latter differences.

6.1.1 Why3 vs Core Why3

AST Differences The Why3-O ASTs are richer than our core ASTs, incorporating more

metadata. Beyond this, there are two key differences. First, our core syntax distinguishes

between terms and formulas, whereas Why3-O does not. Rather, it has a single term datatype

that includes type information; a term has type Some ty, while a formula has type None. This

means that our core datatypes are slightly more restrictive, though the difference disappears

for well-typed terms. Second, the Why3-O ASTs are all mutually recursive, following a

particular structure; we show the pattern type (Figure 6.2) as an example. Some metadata

– in this case the list of free variables and the pattern’s type – is bundled together into a

record alongside the “node”, which has the expected recursive structure.

Typing By Design Why3-O is type-safe: the AST datatypes are opaque2 and can only

be created by smart constructors that perform typechecking (e.g. ensuring that the claimed

type of a formula is None or checking termination of recursive functions). These constructors

throw informative exceptions if the typechecking fails. This has several implications for the

2In OCaml, they are private, which exposes the constructors to enable pattern matching but does not
allow the user to create an instance of the type by using a constructor.
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API design. First, functions can assume that their inputs are well-typed. Usually this is not

a problem (Why3Sem requires well-typing for transformations), but in some core functions,

we do not want to assume well-typing (e.g. α-equivalence; see §6.3.3). Second, the API is

used internally (e.g. in transformations), so the typechecker is called every time new AST

nodes are created. This turns many bugs (e.g. the bug we found in §4.2.3) into ill-typed

terms that cause Why3 to fail with an exception. Our typing proofs for transformations can

be viewed as a proof that these repeated checks are unnecessary.

Unique Names and Identifiers Why3-O contains a fundamental operation to generate

unique identifiers. This task is critical, as it is used to disambiguate repeated symbol names

(e.g. when new hypotheses are created in transformations), to generate new variable names

for α-conversion, and for hash-consing (see next paragraph). To accomplish this, the API

uses mutable global counters; this ensures that the generated identifiers are short. Our

core compiler also needs to generate unique names in similar places. Since Coq does not

have mutable state, we implemented this as an inefficient function that finds an element not

present in a set by enumeration. As we will see, this is one of the trickiest differences to

resolve.

Hash-Consing And Equality The second major use of global mutable state in Why3-O

is for hash-consing, an optimization in which each AST node is created with a unique tag and

stored in a global hash table. Then, to create another instance of this node, the constructor

first looks in the hash table and returns the stored element if present. Such an optimization

reduces space usage and makes checking equality very fast – since only one instance of a

given AST node can ever be created, reference equality (equality of pointers) is sufficient.

By contrast, our core AST has no such notion; we only have decidable structural equality,

which is much slower over large AST nodes. More broadly, hash-consing enforces a global

invariant on the generated API terms – that they are uniquely determined by their tags.
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Data Structures As with any large software system, Why3’s performance depends on

well-chosen data structures. Why3-O makes heavy use of sets, maps, and hash tables,

the former implemented using balanced binary search trees. In our Coq compiler, we use

extensional binary tries as implemented in the std++ library [65] – these are more efficient

in Coq than BSTs [9] and have nicer properties for proofs. Luckily, this difference is smaller

than it appears; while binary tries require mappings from keys to positive integers, Why3-O

uses such functions anyway to implement the order relation for BSTs. However, these tags

are not injective (a requirement of extensional binary tries in Coq), both because in Coq we

can reason about AST nodes not created by hash-consing constructors and because in some

cases different AST nodes can have identical tags (terms are hashed modulo α-equivalence).

Integers Why3-O uses a mix of machine-length integers (OCaml’s int type) and arbitrary

length integers (implemented in OCaml in the Zarith library). In Coq, numbers are typ-

ically implemented using unary natural numbers (for proofs) and a datatype representing

unbounded binary numbers (Z or positive) for computations.3 These are two very different

kinds of data: OCaml ints are fast but require reasoning about overflow, while Coq datatypes

are easy to reason about but are heap-allocated and require many pointer indirections, re-

ducing performance.

6.1.2 Designing a Coq Why3 API

The above differences demonstrate fundamentally incompatible designs between Why3-O

and our core syntax and verified compiler. Some of these incompatibilities are not hard to

resolve – for instance, we can give an augmented AST for types, terms, etc., adding the

needed metadata and defining the semantics via translation to our existing core syntax (see

§6.3.1). It is more difficult to handle the features not present in Coq – exceptions, mutable

state, reference equality, etc. We have two choices: we could attempt to stay close to Why3-O

3Recent versions of Coq add primitive integers that are axiomatized and built in to the kernel.
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or we could make Foundational Why3 purely functional (ideally in a client-indistinguishable

way).

To demonstrate the problems with the second approach, we imagine two potential modi-

fications of the API: one that generates identifiers functionally rather than statefully and one

that avoids hash-consing and uses slower equality checks. The latter would work, though it

would be costly, both in severely degrading performance (see §7.2) and in requiring significant

change even to unrelated parts of Why3 that assume hash-consing invariants.

The former is more problematic. It is possible to generate canonical identifiers for the

types we need (i.e. functions that inject into the positive numbers). Then, it is trivial that

two AST nodes with identical tags are identical, and we could still use hash-consing. But

this approach does not scale. One example of such an injection (for numbers, strings, tuples,

lists, arbitrary trees, etc) is given in the std++ Coq library; we use this in Why3Sem and

the compiler. But for types with even moderate amounts of nesting (e.g. a term contains

function symbols that contain types that contain strings), these values quickly grow too large

for real-world computation.4 Even strings alone are impractical: while 100,000 values can

be stored within 17 bits, a 15-character string (smaller than many used in Why3) requires

120 bits under the natural (and std++) encoding.

Separately, a functional approach does not fully suffice: for α-conversion, we need fresh

identifiers for the same variable. It is not obvious how to generate them efficiently without

some kind of state. One possible solution is to store additional information in the terms rep-

resenting the largest identifier, enabling us to quickly find a fresh one, but this would change

types (visible to external clients) and make most term functions stateful. We note that this

is not a problem in systems like VST, since the tool knows in advance all needed identifiers

(by parsing the input C file) and can assign canonical identifiers as needed. Because we are

implementing an API, we do not know anything about how many or which identifiers are

4For instance, using the standard std++ encoding, the encoding of the type list a already has over 150
binary digits. In our proof system and typechecker, we occasionally had to use association lists to avoid
encoding AST nodes with heavy nesting, which caused stack overflows in Coq.
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needed, forcing us to rely either on impractical functions with nice mathematical properties

(as in the core semantics) or efficient stateful generation of identifiers which complicates

reasoning.

Thus, to ensure that Foundational Why3 is both compatible with Why3-O and practical,

it is necessary for the API to be stateful. But Gallina is a total, purely functional language

and thus does not have mutable state. While we can represent stateful computation in Coq

using a monad, this adds explicit monadic effects to the API types, breaking compatibility

with Why3-O.

6.2 Implementing OCaml APIs in Coq

The standard way to generate OCaml code from Coq is via extraction, a process that erases

Coq proofs and mechanically converts Gallina to purely functional OCaml code. Typi-

cally, one combines this extracted OCaml with hand-written code to handle I/O and other

functions impossible or impractical to implement in Coq, then links everything together

to produce a single executable. This is the approach of CompCert, the FSCQ verified file

system [33], and CertiCoq.

However, most programs are not only executables but additionally provide APIs to allow

clients more fine-grained control. This is especially prevalent in the OCaml ecosystem; for

instance, formal methods tools like Why3, Frama-C, Alt-Ergo, and Coq all provide external

APIs for users to interact with the tool programmatically, e.g. to develop plugins. These

programs are themselves built atop more basic libraries providing APIs, e.g. Stdlib, Batteries,

Core, and ocamlgraph. We aim to enable verified implementations of such APIs so that a

user can implement the desired function in Coq, extract to OCaml, and satisfy the existing

API signature; an OCaml client would get the benefits of verification for free. This would

permit incremental verification – one could verify parts of the API as needed.

But such APIs cannot in general be implemented in Coq. For example, consider the hd

116



va l c r e a t e p a r am de c l : l s ymbo l → d e c l

l e t c r e a t e p a r am de c l l s =
i f l s . l s c o n s t r <> 0 | | l s . l s p r o j then

r a i s e ( UnexpectedPro jOrConst r l s ) ;
l e t news = Sid . s i n g l e t o n l s . l s name i n
mk dec l (Dparam l s ) news

Figure 6.3: A Why3 API function not representable in Coq

function in OCaml’s List library, which throws an exception if the list is empty:

v a l hd : ’ a l i s t → ’ a

l e t hd = funct ion
[ ] → f a i l w i t h ”hd”
| a : : → a

It is impossible to write an axiom-free function with this type in Coq (for good reason: hd

(@nil False) is a proof of False). However, OCaml clients may rely on this exception-throwing

behavior, so we cannot just change the function to give an option.

Why3 has many such functions in its API. For example, create param decl (Figure 6.3),

creates an abstract logical symbol (i.e. function or predicate symbol) declaration. It per-

forms some basic well-formedness checks and raises an exception if the checks fail. Then, it

constructs the declaration with the hash-consing constructor mk decl. The type in OCaml

is lsymbol → decl; interpreted as a Coq type, such a function must always produce a decl

given an input lsymbol. In reality, this function may throw an exception or may produce an

lsymbol after modifying some global state.

In this section, we propose a lightweight design principle enabling us to implement such

a function in Coq while (1) extracting to OCaml code with the correct types and behavior,

(2) remaining executable and axiom-free within Coq, and (3) permitting us to prove the

resulting Coq code correct without heavy-duty machinery (e.g. separation logic). The main

idea is to modify extraction to represent features differently in Coq and OCaml. For each

OCaml feature, we give a computable model of this feature in Coq, linking the two with

special extraction modification directives. This increases the TCB of the extracted OCaml
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Record e r r t y p e : Type :=
{ errname : s t r i n g ; e r r a r g s : Type ; e r r d a t a : e r r a r g s } .

Def in i t i on mk er r t ype name {A} ( x : A) :=
{ | errname := name ; e r r a r g s := A; e r r d a t a := x | } .

Def in i t i on F a i l u r e (msg : s t r i n g ) : e r r t y p e :=
mk e r r t ype ” F a i l u r e ” msg .

Figure 6.4: Step 1: modelling exceptions in Coq

implementation (§7.4) but results in computable and reasonably idiomatic code on both

sides.

The method shown in this section was presented at the CoqPL 2025 workshop [35]. For

that purpose, we developed a library demonstrating this design pattern that also includes

some smaller and self-contained examples; it is available at https://github.com/joscoh/

coq-ocaml-api. The underlying ideas are not new, but existing approaches (§6.4) are far

more heavyweight and largely fail to satisfy our desired properties, especially computability

within Coq.

6.2.1 Error Handling

We first demonstrate the technique for implementing OCaml code with exceptions, using

the running example of the List.hd function. We model error handling in Coq using an error

monad (included in the coq-ext-lib library). To do this, we first model OCaml exceptions

with a record errtype as shown in Figure 6.4. Each errtype instance includes a name and some

arguments; we give the Failure exception (i.e. OCaml’s failwith) as an example. Note that

OCaml’s exn type for exceptions is an extensible variant, an ADT allowing new constructors

to be added at any time. Such types do not exist in Coq; a record allows us to add new

exceptions but disallows pattern matching (which we can partially recover by matching on

the errtype name).

Next, we define the monadic error interface (Figure 6.5). The error monad is simply a

sum type representing either a successful return or an errtype. We define the standard monad

118

https://github.com/joscoh/coq-ocaml-api
https://github.com/joscoh/coq-ocaml-api


Def in i t i on errorM A : Type := ( e r r t y p e + A)%type .
Def in i t i on e r r r e t {A} ( x : A) : er rorM A := r e t x .
Def in i t i on e r r b nd {A B} ( f : A→ errorM B)

( x : errorM A) : errorM B := b ind x f .
Def in i t i on throw : ∀ {A} ( e : e r r t y p e ) ,

er rorM A := fun A e ⇒ r a i s e e .

Figure 6.5: Step 2: Coq error interface

Ex t r a c t Constant errorM ” ’ a”⇒ ” ’ a” .
E x t r a c t Induct ive e r r t y p e ⇒ exn [ ”” ] .
E x t r a c t I n l i n e d Constant e r r r e t ⇒ ” ( fun x → x ) ” .
E x t r a c t I n l i n e d Constant e r r b nd ⇒ ” (@@) ” .
E x t r a c t I n l i n e d Constant throw ⇒ ” r a i s e ” .
E x t r a c t I n l i n e d Constant F a i l u r e ⇒ ” F a i l u r e ” .

Figure 6.6: Step 3: Extracting the error interface to OCaml

functions return and bind and the error-producing monadic throw via coq-ext-lib. The key

step is to extract this to the associated interface (i.e. using exceptions). For the OCaml

types to be consistent, we must erase the monad when extracting. Therefore, errorM A gets

extracted to type A and errtype extracts to exn. Pushing the changes through, we see that

the type of err ret becomes ’a → ’a; this is the identity function (consistent with the erased

monad). Likewise, err bnd has type (’a → ’b) → ’a → ’b when extracted; this is function

application. Finally, throw has type exn → ’a; unsurprisingly we use OCaml’s raise for this.

Individual models of exceptions are extracted to their OCaml counterparts. Figure 6.6 shows

the extraction modification commands implementing this transformation.

All the above steps must be done only once (we have done so in our Coq development

and self-contained library). Then, we can implement an exception-throwing OCaml program

in Coq by writing it in this error monad:

Def in i t i on hd {A: Type} ( l : l i s t A) : er rorM A :=
match l with
| n i l ⇒ throw ( F a i l u r e ”hd” )
| x : : ⇒ e r r r e t x
end .

Extraction then produces the expected function with exactly the same types and effectful
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behavior as desired:

l e t hd = funct ion
| [ ] → r a i s e ( F a i l u r e ”hd” )
| x : : → x

The Coq function is fully computable and very similar to the function we would have written

without extraction. We can prove properties about hd using standard Coq reasoning, without

any additional axioms or program logics. Additionally, note that this method works as long

as the Coq implementation uses only the functions in the interface in Figure 6.5. If one tries

to pattern match on an error monad instance, for example, the resulting OCaml code will

be ill-typed. We discuss this more in §6.2.4.

6.2.2 Mutable State

As we have seen, Why3-O uses mutable state for generating unique identifiers and for hash-

consing (other instances of mutable state can be replaced with equivalent purely functional

implementations at less cost; we ignore these), which is critical for performance. We follow

the same basic approach as for error handling, this time using a state monad in Coq and

extracting to OCaml mutable references. We highlight several key aspects and subtleties.

The Monadic Interface A state monad is a computation taking in an initial state and

producing a new state and an output – st S A := S→ S * A, where S is the type of the state

and A is the return type. The basic operations include bind and return as well as get and set

– the former has type st S S and allows one to retrieve the value of the state; the latter has

type S → st S unit and updates the state. runState allows one to run a stateful computation

on an initial state. Composing state with bind runs the first computation and threads the

resulting state into the second one.

We extract this to mutable references very similarly to the error case. The monad is

erased, bind and return are identical to the error case, get gives the value of the reference,

and set updates the value in the reference. To know which mutable reference to query, we
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encapsulate the state implementation in a module, providing facilities for clients to construct

state (i.e. mutable references) of any non-polymorphic type.

Soundness However, the naive approach above is not sound. The problem is runState,

which has Coq type st S A → S → A. After the monads are erased, the extracted runState

should have type ’a → ’s → ’a; the only (pure) function with this type simply returns the

first element. Essentially, this means that the OCaml implementation of runState would

ignore the initial state and return the input value. In fact, this makes sense: in the OCaml

version, the initial state was already fixed when the mutable reference was first created.

Changing the initial state would be like replaying the computation assuming we had instead

instantiated the mutable reference differently, an impossible task.

A simple example shows that this is unsound. Suppose we have a mutable counter with

an incr function (of Coq type st Int Int). In Coq, it is true that runState incr 0 = runState

incr 0 (both are 1), but in the extracted OCaml, that is false – the left-hand side evaluates

to 1, while the right-hand side evaluates to 2 since incr has been called twice. A solution

is to fix the initial value: our generic state module is parameterized by both the state type

and the initial value. Then, we provide a runState function of type st S A → A. In Coq, this

function runs the stateful computation on the fixed initial value; in OCaml, it returns the

first argument and then resets the value of the mutable reference to the initial value. In this

way, it is safe to run the computation as many times as desired; but it can only be run (in

Coq) on the value the OCaml implementation truly started with.

Composing State and Combining with Errors There are several pieces of mutable

state in the API: an integer for the identifier counter and state for hash-consing the types,

declarations, theory declarations, and tasks. In general, we design our Coq API with types

including the smallest amount of state necessary for each function, even though the eventual

transformations need the full state. We provide various lift functions to turn e.g. st S1 A

into st (S1 * S2) A and prove numerous identities to combine and reorder state; these have
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(∗ I n CoqB ig In t ege r . v ∗)
Def in i t i on t : Type := Z .
Def in i t i on mul : t → t → t := Z . mul .
(∗ I n E x t r a c t . v ∗)
E x t r a c t I n l i n e d Constant CoqBig Int . t ⇒ ” B i g I n t . t ” .
E x t r a c t I n l i n e d Constant CoqBig Int . mul⇒ ” B i g I n t . mul” .

Figure 6.7: Implementing big integer operations

no computational effect (and all are erased during extraction) but ensure that the types are

consistent. This design is not ideal: it requires significant code overhead and a fixed ordering

on the full state, which we decide arbitrarily, but it works reasonably in practice.5

Finally, most functions involve both state and error handling, so we combine these two

features into a single monad via monad transformers. This error-and-state monad represents

a computation that takes an initial state and produces a new state along with a possibly-

error-producing result. The extraction of the combined error-and-state monad is almost

identical to those we have seen, and we provide the appropriate lift operations to embed

each individual monad into the combined one.

6.2.3 Other OCaml Features Not Representable In Coq

Mutable state and exceptions are the trickiest components to deal with, but there are several

other OCaml features not supported in Coq for which we take a similar approach of modifying

extraction.

Integers Why3-O uses both machine-length and arbitrary-length integers. It is possible to

model fixed-length integers in Coq as an unbounded mathematical integer (Z) and a proof of

the bound (e.g. CompCert’s Int library does this); then, we could extract this integer model

to OCaml fixed-size integers. We do this in a few cases, but this requires many tedious

proof obligations about bounds, which are unnecessary in most cases (e.g. computing the

5Haskell-style lenses would alleviate some of these issues (reducing boilerplate in getting and setting the
composed states), but not all – they do not permit arbitrary composition of states.
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(∗ d e c i d a b l e e q u a l i t y ∗)
Def in i t i on eqb x y := ( tag x =? tag y ) && . . .
Def in i t i on e q b f a s t x y := eqb x y .
(∗ I n E x t r a c t . v ∗)
E x t r a c t I n l i n e d Constant e q b f a s t ⇒

” ( fun x y → x == y | | eqb x y ) ” .

Figure 6.8: Implementing fast equality

length of a list). Instead, we make small changes to the API in several places and replace

ints with OCaml’s Zarith library for unbounded integers.6 Most such integers are small, and

thus Zarith is very efficient. Then, we implement an integer interface in Coq with all the

required operations we need; we extract these to the appropriate Zarith functions. Figure

6.7 shows an example, where BigInt is the existing wrapper around Zarith in Why3.

Reference Equality Reference equality (==) compares memory addresses; it is much

faster than standard (structural) equality (=). Why3-O frequently uses reference equality

to compare AST nodes quickly (thanks to hash-consing, this is safe). No Coq function can

represent reference equality, as the following example shows:

”p” == ”p” ; ; (∗ f a l s e i n OCaml∗)
l e t x = ”p” i n x == x ; ; (∗ t r u e i n OCaml∗)

Lemma l e t e q {A B : Type} ( foo : A→ A→ B) y :
( l e t x := y i n f oo x x ) = foo y y . (∗ equa l i n Coq∗)
Proof . r e f l e x i v i t y . Qed .

We cannot abandon reference equality entirely; it is far too slow to traverse each AST node

every time. Meanwhile, in Coq, we need decidable structural equality for proofs. To resolve

this, we make use of two crucial properties. First, if x == y, then x = y in OCaml.7 Second,

because the hash-consed elements have unique tags by definition, two elements should be

equal iff their tags are equal. We implement “fast” versions of equality as in Figure 6.8.

6There are not very many such functions we need to change: other than hashing, integers are mainly
used for size computations (e.g. the number of term free variables), which are rare.

7This property could be axiomatized in Coq as follows: First, we model reference equality as a relation
ref eq : A → A → bool → Prop (a relation allows reference equality to “return” both true and false for
equivalent Coq values). The axiom states that if ref eq x y true, then x = y.
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First, we define standard structural equality and prove that it accurately decides Leibniz

equality. However, we check tags first before checking any other fields. Then, we define a

fast version in Coq identical to decidable equality; extracting this to the function shown.8

If the two nodes are equal, by the hash-consing property, x == y will give true; thus, the

computation short circuits and does not need traversal. Meanwhile, if the two nodes are not

equal, reference equality gives false, but the tags are unequal; thus, eqb returns false without

examining the rest of either structure. This resulted in significant speedup compared with

using pure structural equality in the OCaml implementation (see §7.2).

Mixed Record-Inductive Types The last feature for which we use our modified ex-

traction mechanism is mixed record-inductive types, mutually recursive types where at least

one type in the mutual block is a record (see Figure 6.2 for an example). Coq does not

support such types; unlike the previous features, there is no fundamental reason why this

must be the case (indeed, Coq records are really just regular inductive types with additional

notation). We have two possible choices for how to implement such types. First, we could

just use a mutually recursive type, replacing the record with a single-constructor ADT. This

is straightforward to reason about in Coq. However, it is not compatible with the existing

OCaml API, and clients of Why3 depend on dot-notation to access record fields.

There is an alternative that allows us to trick Coq into accepting a mixed record-inductive

type. Namely, we make one type parametric, and later instantiate it with itself, as Figure

6.9 shows. Careful examination will reveal that, from the point of view of an external client,

this representation is equivalent to the pattern and pattern node shown in Figure 6.2: the

recursive structure is identical and pattern is a record with the correct fields.9 However,

there is a downside: Coq cannot generate an induction principle for such a type and cannot

tell that recursive functions defined over the structure of this type terminate. It is possible

8If we need fast computation within Coq, we can compare tags, as long as we are in a context where all
nodes are hash-consed. We later (§6.3.2) discuss global state invariants expressing this.

9It appears that a user can create a pattern o instantiated with different types, but since the types are
marked private to external users, this is not possible.
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Record p a t t e r n o (A : Type ) :=
{ pat node : A ; p a t v a r s : Svs . t ; p a t t y : t y c } .

Induct ive pa t t e r n node :=
| Pwi ld
| Pvar : vsymbol → pa t t e r n node
| Papp : l s ymbo l → l i s t ( p a t t e r n o pa t t e r n node ) → pa t t e r n node
| Por : ( p a t t e r n o pa t t e r n node ) → p a t t e r n c → pa t t e r n node
| Pas : ( p a t t e r n o pa t t e r n node ) → vsymbol → pa t t e r n node .

Def in i t i on pa t t e r n := ( p a t t e r n o pa t t e r n node ) .

Figure 6.9: Implementing mixed record-inductive type in Coq

to get around this by defining a size function and performing well-founded induction, but

this is tedious and repetitive. Instead, we include both types, using the mutually recursive

one for computation and proofs in Coq, while extracting to the mixed record-inductive type.

Again, we provide a carefully chosen interface to ensure that the OCaml code typechecks,

including constructors and functions to retrieve the components of the Coq mutual ADT.

We extract to the corresponding OCaml functions on the mixed record-inductive type.

We have consistently chosen representations for the unsupported OCaml features that

make our Coq reasoning and computation simple and reasonably efficient: monads, Z, de-

cidable equality, and mutually recursive types. This aligns with our design goals: our Coq

implementation assumes no axioms and is reasonably close to what we would write if we

were not extracting to OCaml at all. The OCaml implementation requires more trust, but

we provide a relatively small set of primitives for which we modify extraction, giving us

confidence that both versions of our API compute the same functions.

6.2.4 Limitations

Though our approach is lightweight and satisfies our design properties, it has several draw-

backs. These limitations do not prevent us from implementing our desired subset of Why3-O

in Coq, but they shift some additional burden on the user and restrict other possible uses.
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Limits to OCaml’s Type System While we can extract the concrete monads to their

non-monadic counterparts, there are limits to this. Namely, we define new functions per

monad (e.g. err ret and st ret rather than a single return); similarly, we do not write and

extract functions polymorphic over monads. The problem is that OCaml’s type system is not

nearly as strong as Coq’s, lacking higher-kinded types. Therefore, the resulting code would

be littered with Obj.magic (unsafe typecast), inserted by Coq’s extraction whenever OCaml

cannot express a particular type, making the code extremely poor quality and difficult to

read. Therefore, we write separate definitions, using Coq’s notation scopes to write similar-

looking code for each monad without ambiguity. Note that in the end, our functions are

evaluating concrete monad instances; therefore, if Coq could perform partial evaluation

before extracting to OCaml, this would not be a problem.

Compiling the Extracted Code There is some additional practical work needed to

correctly compile the resulting OCaml programs. We use Why3’s existing .mli files, which

define the external interface and the information visible to clients10 instead of the extracted

ones. There is a dependency problem: the type-safe constructors throw exceptions which

themselves have AST arguments defined in the same file. In other words, we cannot declare

the exceptions either before or after the extracted code. Instead, we split the API files into

4 parts: (1) defining the AST definitions (in Coq, extracted) (2) defining the exceptions (in

OCaml) (3) defining the needed API functions, including type-safe constructors (in Coq)

(4) defining the rest of the API, which we need purely for compatibility with existing Why3

OCaml code. We then use dune to concatenate the files together between extraction and

OCaml compilation.

Coq and Opacity Why3-O crucially relies on information hiding: external users (even

within other parts of the API) can only construct and use AST nodes as prescribed in the

10With minor modifications, e.g. for the alternate mixed record-inductive types and arbitrary-length
integers.
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API. This results in type safety and other global invariants (e.g. hash-consing properties).

To represent such reasoning, we would need to make certain definitions opaque. Additionally,

as we saw, our method for implementing OCaml APIs relies on a disciplined Coq user – if the

user calls functions outside the given interface, the resulting OCaml code will be incorrect

and will likely fail to typecheck.11 Ideally, we would enforce this restriction within Coq itself

through opacity.

Unfortunately, opacity is not well supported in Coq. For instance, some types cannot be

made opaque or else Coq cannot tell that recursive functions terminate, while other forms

of opacity are ignored by Coq simplification.12 There are only two ways to make something

truly opaque in Coq: axiomatize it (and sacrifice computability) or hide it behind a module

type. The latter complicates reasoning and violates our design goals. First, every Coq object

relying on this opaque definition must then be defined in a module parameterized by the

module type. For instance, the Term API would become a module functor taking in a State

module type. This completely violates our design goal of compatibility with Why3-O, and

OCaml users should not need to reason about any state monad implementation in their

code, even an opaque one. Coq modules are also difficult to reason about, as they are not

first-class and interact poorly with inductive type definitions. Some, but not all, of these

issues would be alleviated if Coq had an .mli-like construct; then one could specify exactly

the exposed interface without needing an explicit module functor (indeed, .mli files in OCaml

are module types guaranteed to have exactly one implementation; the compiler can infer the

module functor argument). But at present, we cannot have computability, compatibility,

and information hiding at once in our Coq API.

Limitations on Mutable State Lastly, our mutable state implementation is restrictive

– one cannot directly define an array or any piece of state that depends on a more com-

plicated mutable structure (e.g. a tree or graph). Additionally, while this method does

11Despite our modified runState implementation, since the St type is not opaque, it is still ultimately a
function and could be applied; this violates the soundness of our extraction method.

12For example, Coq’s compute respects opacity in some cases, while vm compute ignores it.

127



support multiple instances of the same type of state, the user must be careful to keep the

two separate – in Coq, these could be indistinguishable (e.g. there is no difference between

a stateful computation over a single state of type A * A and one over two separate states of

type A, though the OCaml representation is quite different). However, this simpler represen-

tation suffices for our purposes: the states we need are integer- and hash-table-valued (our

“mutable” hash table is a mutable reference storing an immutable binary trie). It would be

possible to extend this implementation to handle more kinds of state; see §6.4.

6.3 Connecting Foundational Why3 to Why3Sem

In this section we describe how we can connect Foundational Why3 and our proved-correct

compiler for P-FOLDR. Our basic approach is as follows: first, we define the semantics of

Foundational Why3 via translation to P-FOLDR through functions that strip away the extra

information and produce a core AST node. Second, we define reasoning principles on state-

ful, exception-throwing code and define soundness for Foundational Why3 transformations.

Next, to facilitate reasoning, we prove a decomposition theorem that allows us to completely

separate the proofs of soundness (completed in Chapter 5) and the equivalence between

Foundational Why3 and core tasks (recall, a task consists of the context, hypothesis, and

goal). This equivalence, a generalized form of α-equivalence, permits purely syntactic and

compositional reasoning. Finally, we give an end-to-end proof of the equivalence between

stateful and stateless safe substitution and show how this can be used to prove the soundness

of eliminate let, the transformation that eliminates let-bindings by substitution.

6.3.1 From Foundational Why3 to P-FOLDR

We define Coq functions eval * (eval term, eval ty, eval task, etc) that remove the extra

metadata (unique tags, free variable sets, etc) and produce core nodes, with semantics given

by Why3Sem. Most of these are straightforward, with two exceptions.
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First, polymorphic function application is handled differently: the Why3-O AST requires

a function symbol and a list of terms annotated with their types. The typechecker automat-

ically infers the type substitution (if one exists) for the type parameters of the function. By

contrast, in the core AST, we explicitly give the type substitution; to resolve this, we write

a version of this inference for core terms and use this in eval term. Second, some Why3-O

AST nodes are implemented differently: while the core syntax distinguishes between terms

and formulas, Why3-O does not. Similarly, while core proof tasks distinguish between defini-

tions, hypotheses, and the goal, Why3-O includes all in one data structure (decl). To handle

these differences, many of the eval functions return an option; a None result represents some

ill-typedness (e.g. if one tries to quantify over a term instead of a formula). The semantics

are only defined on terms that evaluate to Some. Eventually, we would like to extend this

by giving a similar type system for Foundational Why3 as for P-FOLDR and proving that

well-typed AST nodes always evaluate to Some x, where x is a well-typed core AST node.

Nevertheless, the eval task function transforms a Foundational Why3 task into a core task,

enabling us to define typing and validity:

Def in i t i on t y p e d t a s k ( t : t a s k ) : Prop :=
∃ t ’ , e v a l t a s k t = Some t ’ ∧ c o r e t a s k t y p e d t ’

Def in i t i on v a l i d t a s k ( t : t a s k ) : Prop :=
∃ t ’ , e v a l t a s k t = Some t ’ ∧ c o r e t a s k v a l i d t ’ .

6.3.2 Relating Stateful and Stateless Code

Now we define soundness for Foundational Why3 transformations. While core transforma-

tions are functions of type task → list task, Foundational Why3 transformations have type

task → errState full st (list task), where full st is the global state. This state consists of a

counter for identifiers and hash-cons information (counter and hash table) for types, decla-

rations, theory declarations, and tasks. Therefore, our soundness definition will involve the

error+state monad and the specific invariants that we need on full st.

To enable such reasoning, we take inspiration from the State Hoare Monad [104], which

129



Def in i t i on s t s p e c {A B: Type} ( Pre : A→ Prop ) ( s : s t A B)
( Post : A→ B→ A→ Prop ) : Prop :=
∀ i , Pre i → Post i ( f s t ( r unS ta t e s i ) ) ( snd ( r unS ta t e s i ) ) .

Figure 6.10: Hoare-style reasoning for the state monad

Def in i t i on e r r s t s p e c {A B: Type} ( Pre : A→ Prop )
( s : e r r S t a t e A B) ( Post : A→ B→ A→ Prop ) : Prop :=
∀ i b , Pre i → f s t ( r u n e r r S t a t e s i ) = i n r b→

Post i b ( snd ( r u n e r r S t a t e s i ) ) .

Figure 6.11: Hoare-style reasoning for the error+state monad

augments state monads with (dependently typed) Hoare-style reasoning principles. Our

approach is not dependently typed; instead, we separately define the meaning of Hoare

triples via a shallow embedding. Figure 6.10 shows the definition; it says that a specification

holds if, whenever the precondition holds on the initial state, then the postcondition holds on

the initial state, final state, and return value. Note that most Hoare logics do not explicitly

reason about the initial state in the postcondition; this generality is useful but makes some

of the reasoning principles a bit trickier. For example, the bind rule is similar to the classic

Hoare rule for sequential composition but must explicitly quantify over the intermediate

state. We prove reasoning principles for bind, return, get, and set, along with weakening

and consequence rules and several convenient rules for proofs (e.g. for combining separate

specifications). Note that unlike with a deeply embedded program logic, none of this is

strictly necessary: we could always unroll all the state monads and definitions and reason

using ordinary Coq tactics. However, this provides a more convenient and compositional

way to structure proofs.

We lift this idea to the error+state monad in the natural way (Figure 6.11); the same

compositionality theorems hold, with additional results for lift operations – if a st A B is

lifted to errState A B, we can lift the corresponding st spec to errst spec and if an errorM B is

lifted to errState A B, in the non-error case, we simply prove the implication for the stateless

computation, and in the error case, we can prove any spec. Note that we prove partial
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correctness – if the computation succeeds, then the postcondition must hold. This aligns

with our goal of proving soundness: an implementation that fails with an exception may be

incomplete, but it is not unsound. However, we would eventually like to extend this to total

correctness and prove that for well-typed Foundational Why3 inputs, the transformations

succeed.

We next define when a given task is consistent with the global state (st wf). This requires

that (1) all variables occurring in the state must have ID smaller than the current counter

and (2) all hash-consed AST nodes have tags smaller than the corresponding counter and

are in the corresponding hash table.13

We can now define soundness for transformations in the error+state monad: if the input

task is well-typed and consistent with the initial state, then if the transformation executes

successfully and the output task is valid, so was the input (there is a corresponding version

for lists):

Def in i t i on t r a n s e r r s t s o u n d ( t r a n s : t r a n s e r r s t t a s k ) : Prop :=
∀ ( t : t a s k ) , e r r s t s p e c
( fun s ⇒ s t w f t s ∧ t y p e d t a s k t )

( t r a n s t )
( fun ( r : t a s k ) ⇒ v a l i d t a s k r → v a l i d t a s k t ) .

In principle, we could now use this definition to prove transformations sound. We must

reason both about hash-consing and the generation of unique names (for variables and sym-

bols). Dealing with the former is not hard since eval removes the tag information. However,

unique names pose a larger challenge – trans errst sound is very restrictive, as it requires

reasoning about the exact results of eval task. Instead, we would like to relate the stateful

implementation to the corresponding transformation in our compiler - the two are equivalent,

but only modulo variable and symbol names. Moreover, we would like to separate the proof

relating the stateful and stateless versions from the soundness proof, carried out entirely in

Why3Sem. Thus, we need an appropriate abstraction that lets us reason about equivalence

between Foundational Why3 and core tasks that is (1) purely syntactic, (2) compositional,

13We will eventually additionally require that the hash tables contain unique AST nodes, but our proofs
do not yet need this.
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and (3) invariant to changes in variable names. We now provide such an abstraction: a

generalized notion of α-equivalence.

6.3.3 Generalized α-Equivalence

α-Equivalence of Terms, Formulas, and Patterns Up to now, we have largely omitted

discussion of α-equivalence, which has been crucial in several places throughout Why3Sem

and the compiler, e.g. to implement safe substitution, to prove the special syntactic form

for inductive predicates (§3.2.5), and to prove compile match sound. We include both the

definition of α-equivalence as well as two functions for α-conversion: one that makes all bound

variable names unique (and which we show corresponds to a stateful version in §6.3.4) and

a faster, more readable renaming scheme for safe substitution in the proof system. The

definition of α-equivalence for terms and formulas is largely standard. We first define α-

related terms and formulas under a given pair of finite maps m1 and m2 storing the mapping

of bound variables between terms. Formally, variables x and y are related iff m1(x) = y and

m2(y) = x (the bindings are consistent) or x is not in m1, y is not in m2, and x = y (for free

variables). Two terms or formulas are α-equivalent if they are α-related under empty maps,

and bindings add the corresponding pairs to the maps.

The difficult case concerns patterns and pattern matching. Checking α-equivalence of

patterns amounts to constructing maps r1 : fv(p1)→ fv(p2) and r2 : fv(p2)→ fv(p1) such

that the two patterns have the same “shape” (e.g. equivalence ignoring variables) and the

variables map correspondingly. An explicit construction is necessary to use these maps to

recursively check the α-equivalence of each branch in a pattern match. While these maps

have nice properties (e.g. bijectivity), the algorithm to construct them is stateful and tricky

to reason about.

Showing that α-equivalent patterns are well-typed is nontrivial. Recall that well-typed

patterns have a number of additional restrictions on their variables (§2.2) – disjunctions have

the same free variables, constructor pattern arguments all have disjoint variables, and in p
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as x, x does not occur in p. Therefore, we must show that the constructed maps preserve

variable equality and inequality. Additionally, the Why3-O implementation assumes that the

input patterns are well-typed (justified by the API design), while we define α-equivalence

over potentially ill-typed patterns (for instance, we want to know that α-equivalence is an

equivalence relation regardless of typing). Our implementation is slightly different from that

of Why3-O and assumes nothing about typing; we prove the two versions equivalent under

typing assumptions. With all this, we can prove desired properties of α-equivalence:

Theorem 6.3.1. Let t1 and t2 be α-equivalent terms (formulas are similar). Then the

following hold:

• If Γ ⊢ t1 : τ , then Γ ⊢ t2 : τ (a equiv t type).

• If both terms are well-typed, then for all interpretations and valuations, Jt1Ktv = Jt2Ktv

(a equiv t rep).

• The free type and term variables of t1 and t2 are equal (a equiv t type vars and a equiv t fv).

• t1 and t2 have the same shape (i.e. structure ignoring variables) (alpha shape t).

In all cases, these arise as corollaries of more general results about α-related terms and

formulas.

Generalizing α-Equivalence to Tasks We lift α-equivalence to larger structures (def-

initions, contexts, and tasks) in the natural way: each corresponding term or formula is

α-equivalent and in general, non-term/formula data is equal.14 But this is not sufficient for

recursive functions and predicates. Recall that recursive functions consist of a name f , a list

of variable arguments vs, and a body b. We cannot simply require the that bodies are α-

equivalent, as the arguments may differ. Instead, for definitions (f1, vs1, b1) and (f2, vs2, b2),

b1 and b2 must be α-related under the maps vs1 → vs2 and vs2 → vs1. We also need the

condition that vs1 and vs2 either both have unique names or neither does.15

14In the future, this would be extended with a map between the symbol names; unlike with α-equivalence,
this is constant, bijective, and straightforward to reason about.

15For well-typed contexts, they both do; the both-or-neither condition allows us to prove that if one is
well-typed, so is the other. We cannot just require both or else this relation is not reflexive.
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For the desired decomposition theorem, we want to prove that generalized α-equivalence

preserves typing and validity of tasks. Proving semantic equivalence is tedious but not too

difficult, and the crucial part is to prove that the spec for recursive functions (§3.2.4) still

holds. This ultimately follows from results about the semantics of α-related terms (more

general than the property in Theorem 6.3.1) and the fact that all free variables correspond

appropriately in the α-maps. Typing is much more difficult: we must show that the termi-

nation check (§2.2.2) is preserved by this α-relation. Recall that the termination check keeps

track of sets of variables s and h. With α-equivalence, we now need detailed assumptions

about how the variables in the maps m1 and m2 relate to s and h. Specifically, we prove the

following:

Lemma 6.3.1 (a equiv decrease fun). Let t1 and t2 be terms α-related by maps m1 and m2.

Let s1 and s2 be sets of variables, and let h1 and h2 be empty or singleton sets of variables

(i.e. options). Suppose the following conditions hold:

1. If m1(x) = y and m2(y) = x, then if x ∈ s1, then y ∈ s2.

2. If m1(x) = y and m2(y) = x, then x ∈ h1 iff y ∈ h2.

3. All variables in s1 and h1 occur in m1.

Then if (s1, h1) ⇓ t1, then (s2, h2) ⇓ t2.

The proof is nontrivial; it is not the case that each termination case is exactly equiv-

alent, since it is possible that one pattern match occurs on a smaller variable (i.e. case

dec match var) and the other does not (dec match rec). However, we relate distinct

cases through a weakening lemma allowing us to add variables to the smaller set without

changing termination: if s1 ⊆ s2 and h1 ⊆ h2, then (s1, h1) ⇓ t =⇒ (s2, h2) ⇓ t.

A Decomposition Theorem With all this, we prove that α-equivalence on tasks pre-

serves typing and semantics. Then, we define relations on Foundational Why3 tasks and

core tasks (and terms, types, etc) generalizing the equality from the eval * functions:
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Def in i t i on t a s k r e l a t e d ( t1 : t a s k ) ( t2 : c o r e t a s k ) : Prop :=
∃ t , e v a l t a s k t1 = Some t ∧ a e q u i v t a s k t t2 .

Finally, we provide a decomposition theorem allowing us to prove a Foundational Why3

transformation tr1 sound in 2 steps: (1) Give a core transformation tr2 and prove it sound

according to Why3Sem (2) Prove that under a well-formed state, tr1 and tr2 take related

inputs to related outputs:

Theorem p r o v e t r a n s e r r s t d e c ompo s e ( t r 1 : t r a n s e r r s t t a s k )
( t r 2 : Task . t a s k → Task . t a s k ) :
s o und t r a n s t r 2 →
(∀ t s k1 tsk2 , e r r s t s p e c

( fun s ⇒ s t w f t s k1 s ∧ t a s k r e l a t e d t s k1 t sk2 )
( t r 1 t s k1 )

( fun r ⇒ t a s k r e l a t e d r ( t r 2 t s k2 ) ) ) →
t r a n s e r r s t s o u n d t r 1 .

This enables a clean split between the semantic reasoning (done entirely in Why3Sem) and

the syntactic reasoning between the stateful and stateless transformations. Note that this

kind of decomposition is very similar to the functional model-implementation separation

common in large-scale verification efforts. One typically wants to reason separately about

the state-manipulating imperative program and a purely functional, stateless model with

nicer mathematical properties. The connection between the two is often handled by the

verification framework. For example, in VST, one specifies the result of a memory update as

a Coq function on the bytes stored in that location. In our case, state is shallowly embedded

in a proof assistant, but the above decomposition theorem allows us to perform a similar

separation of concerns for this particular setting (unique name generation).

6.3.4 Case Study: Substitution and eliminate let

Here, we discuss the partial proof of soundness of the eliminate let transformation, which

eliminates let-bindings via substitution. The version of the transformation we consider16 has

16Note that this is not exactly the one used byWhy3, which is not structurally recursive and has a nontrivial
termination argument. We do implement and prove sound the Why3 version as a core transformation [36]
but do not implement a stateful version or discuss further here.
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only one interesting case; the others just apply the function recursively:

eliminate let(let x := t1 in t2) = (eliminate let t2)[(eliminate let t1)/x]

Thus, the key step is to relate stateful and stateless substitution. We prove this relation for

a subset of terms (where the only binding is let-binding) and show how we could use this to

verify the soundness of eliminate let.

Defining eliminate let with Term Traversal In Why3-O, the non-let cases of elimi-

nate let are defined using a generic t map function that maps over terms. t map is not

explicitly recursive, but its function argument is instantiated with eliminate let recursively.

However, Coq cannot tell that such a scheme terminates. Instead, we give a generic recur-

sive traversal function over terms (which we call term traverse). We need this traversal to be

binding-safe, so to open binders we use the API function t open bound, which (statefully)

produces a fresh variable and substitutes this for the bound variable.17

Defining term traverse is quite tricky. It is not structurally recursive due to binders.

Given formula ∀x, f , the function t open bound opens the binder, incrementing the counter

and resulting in fresh variable y and formula f [y/x], which is not a subterm of the original

one. To show termination, we define a standard size function, but even this size function

is tricky to reason about thanks to the mutually recursive model of mixed record-inductive

types for terms (§6.2.3) – the size function is defined over terms, but the recursion occurs on

term-nodes. We prove an alternate induction principle for terms allowing us to ignore non-

node information and bypass mutual recursion, using this to prove that variable substitution

preserves the size.

However, this is still not sufficient because the function body of the state monad bind does

not have any information about the state it is called on. A recursive call within the body

17There are also similar functions t open branch for pattern binders and t open quant for quantifiers, both
of which generate and substitute multiple fresh variables at once. We focus on t open bound for simplicity.
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of bind knows nothing about the term and its size and therefore cannot prove termination.

To handle this, we define a dependently typed version of bind for the error+state monad

that remembers the state it was called on, and we prove the appropriate Hoare State Monad

reasoning principle. Putting this all together to define term traverse is still tricky: we cannot

use Equations as it does not support mutual well-founded recursion (and has other problems

with monadic binders), so we use a manual technique known to produce good quality OCaml

code [75]. Finally, we prove an induction principle for term traverse, simplifying reasoning

about arbitrary traversals.

We complete the definition of eliminate let by implementing a version of stateful substi-

tution: first, we do a trivial term traverse to make all binders unique (we call this t mk wf),

then we perform a regular (stateless) substitution – this ensures that no variables can be

captured. Note that this is different from Why3’s implementation, which uses a deferred

substitution mechanism (see §7.1).

Invariants The correctness theorems for substitution and eliminate let rely on the state

invariants – this lets us show that the newly generated variables are truly fresh. Unfor-

tunately this induces many tedious proof obligations, as we must show that every stateful

function produces AST nodes consistent with the state and preserves the consistency of exist-

ing nodes. We prove that any function that only increases the global counter and hash table

counters and that only grows the hash tables18 cannot make nodes inconsistent. Then we

show that this monotonicity property holds of substitution and eliminate let and separately

prove their outputs consistent.

Though we do not give a full type system, we define an invariant types wf encoding some

well-formedness conditions on types (e.g. that the branches of an if-expression have the same

type and that the claimed free variables in a binding are correct). This is needed for the

substitution proof of correctness, which relies on type information and free variable sets.

18In Why3, hash-consing is implemented using weak hash tables, which can shrink if an element is garbage-
collected. The above monotonicity property does not hold in the presence of garbage collection, and our
implementation uses non-weak data structures.
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Specifications for Substitution We prove that each component of substitution is related

to its stateless version, assuming all inputs are consistent with the given state. First, we can

show that, given term t that evaluates to core term e, opening the binder (v, t) results in a

fresh variable v2 and a term t2 that evaluates to e[v2/v]:

Theorem t open bound r e s tm v b t1 e1 (Hwf : t y p e s w f t1 ) :
e v a l t e rm t1 = Some e1 →
e r r s t s p e c ( fun ⇒ True )

( e r r s t t u p 1 ( e r r s t l i f t 1 ( t open bound ( v , b , t1 ) ) ) )
( fun ( v2 , t2 ) ⇒ e v a l t e rm t2 =

Some ( s u b v a r t ( eva l v s ym v ) ( eva l v s ym v2 ) e1 ) ) .

We separately prove that v2 is equal to v except that its ID is the old state s1’s counter; this

ensures that v2 is fresh as long as t1 and v are consistent with s1 (e.g. all IDs were smaller

than s1).

Next, we prove that substitution is related to stateless substitution. This is the core

of the correctness argument, and the abstraction of α-equivalence lets us relate these two

versions of substitution syntactically. The crucial part of the proof concerns t make wf; we

prove that the output evaluates to the α-conversion of the input, with the new variable names

given by the combination of the old names and the new states (which can be determined

functionally). Then, we use this to show that if t1 is related to core term e1 and t2 is related

to e2, then the result of stateful substitution is related to the (stateless) safe substitution on

core terms e2[e1/x].

Theorem t s u b s t s i n g l e tm s p e c v t1 t2 e1 e2
( H l e t : o n l y l e t t2 ) (Hwf : t y p e s w f t2 ) :
t e rm r e l a t e d t1 e1 →
t e rm r e l a t e d t2 e2 →
e r r s t s p e c
( fun s1 ⇒ t e rm s t w f t1 s1 ∧ t e rm s t w f t2 s1 ∧ v sym s t w f v s1 )

( t s u b s t s i n g l e v t1 t2 )
( fun t3 ⇒ t e rm r e l a t e d t3 ( s a f e s u b t e1 ( eva l v s ym v ) e2 ) ) .

Note that the hypothesis and postcondition involve relations (term related) rather than di-

rect evaluation (eval term) like in t open bound and t make wf. Here, we only know that the

resulting term is α-equivalent to the one we want, since the bound variables may change ar-

bitrarily (the function is deterministic, but this specification allows for different α-conversion
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mechanisms or traversal orders). Since we only assume the inputs are related, we must show

that no matter what α-equivalent terms we choose, after running the desired function (in this

case substitution), the result is equivalent (we show the case for α-equivalence, the general

α-related case is similar):

Lemma 6.3.2 (alpha equiv t sub not bnd). Suppose t1 and t2 are α-equivalent, t3 and t4

are α-related under the map x↔ y, and neither x nor any variable free in t1 is bound in t3

(and likewise for y, t2, and t4). Then t3[t1/x] and t4[t2/y] are α-equivalent.

Proving eliminate let Sound We do not carry out the full eliminate let proof in Coq, but

it follows from the correctness of substitution. We show the main proof steps. First, we

can prove the term-rewrite rule equivalent to the stateless one via the induction principle on

term traverse:

Theorem e l i m l e t r e w r i t e r e l a t e d f1 g1
( H l e t : o n l y l e t f 1 ) (Hwf : t y p e s w f f 1 )
e v a l fm l a f 1 = Some g1→
e r r s t s p e c ( t e rm s t w f f 1 )

( e l i m l e t r e w r i t e f 1 )
( fun f2 ⇒ f m l a r e l a t e d f2 ( e l i m l e t f g1 ) )

The interesting cases are handled by the substitution-related results.

Then, we can lift the result to the full task transformation. Since the above theorem has

an eval- precondition, we prove a similar result as Lemma 6.3.2 to show that α-equivalent

inputs result in α-equivalent outputs to elim let f. Finally, we can use the decomposition

theorem (§6.3.3) to combine this with the soundness proof of the stateless eliminate let for

overall soundness.

6.4 Related Work

There is a very long line of work about the broad problem of connecting functional programs

written in proof assistants to efficient imperative implementations. Ynot [84] is a framework

for Coq that supports writing, reasoning about, and extracting imperative programs in Coq
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– it is based on axiomatizing the external effects (e.g. mutable state, nontermination, and

exceptions). Ynot is much more powerful than our method but is more heavyweight and

requires axioms; the resulting programs are not directly computable within Coq. Itrees [113]

are a coinductive data structure used to represent denotational semantics for imperative and

impure languages; they can be extracted to executable implementations. However, since they

are coinductive and may represent infinite computation, Itrees also cannot be computed in

Coq.

Other efforts have focused on connecting Coq with external imperative code. VeriFFI [63]

is a verified foreign function interface between Coq and C; it allows one to use C functions

in Coq and Coq functions in C, with the meaning of C functions given by VST function

specs (which the user must prove satisfied). It provides the example of mutable arrays using

a monadic interface as the Coq functional model, but without complete proofs. VeriFFI

does not suffer from the opacity limitations we discussed; the external functions are axioma-

tized with appropriate isomorphisms and rewrite rules (this prohibits computation in Coq).

Formally Verified Defensive Programming (FVDP) [28] is a paradigm for allowing Coq pro-

grams to call OCaml programs as oracles (when extracted), using a nontermination monad

to encapsulate the (possibly non-pure) result. It includes an embedding of OCaml pointer

equality, implements a hash-consing example, and decomposes proofs into stateful and non-

stateful reasoning. Combining this approach with ours could permit Coq implementation of

APIs that depend on both Coq and OCaml code (though the resulting API functions would

not be executable within Coq directly).

Similar ideas are also used in the Isabelle Refinement Framework [67], which automati-

cally refines algorithms to efficient implementations (e.g. a map to a red-black tree). The

user gives and proves a refinement relation between the two representations. This has been

extended to imperative refinement [68, 69]. Here, the user writes a monadic function (in

the nontermination monad) and uses separation logic defined over a shallow embedding of

heap-manipulating programs; automation including a VC generator assists the process.
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Perhaps the most directly similar ideas – implementing monadic functions and extracting

to imperative code – were implemented by Abrahamsson et al. in CakeML [2] and by

Sakaguchi in Coq [97]. Abrahamsson et al. generate imperative CakeML programs from

monadic HOL programs using the error-and-state monad and produce a certificate that

validates that the translation is sound. They combine the various pieces of state into a

single record. Notably, because they implement whole programs and not APIs, they set the

state appropriately at the beginning of each computation, avoiding the soundness issue we

encountered (our solution, resetting to the initial state, is a generalization of this approach).

Their approach is proved correct, and similar ideas would be useful in allowing us to verify

the soundness of our modified extraction, assuming a suitable program logic for OCaml.

Sakaguchi implements array-manipulating programs in Coq, using a state monad specialized

to arrays and modifying extraction in a very similar way as we do, dealing with a similar

soundness issue by copying arrays when needed. The approach is limited to arrays (to avoid

aliasing analysis) and produces OCaml code with lots of Obj.magic, but similar ideas could

be useful to extend our method to handle arrays.

There is additionally significant prior work on hash-consing. As mentioned, FVDP in-

cludes hash-consing as an example. Why3’s hash-consing implementation is based on the

technique of Filliâtre and Conchon [49]. Braibant et al. [29] study the implementation of

hash-consing in Coq, providing 3 different implementations. First, they implement every-

thing inside Coq – they use a state monad and define similar invariants on the global state,

though they reason in pure Coq rather than with a Hoare State Monad. They next give

an implementation that avoids hash-consing reasoning in Coq but extracts to Filliâtre and

Conchon’s OCaml hash-consing library, extracting Coq decidable equality to OCaml physical

equality. They lastly give a completely axiomatized version. Our approach is a combination

of the first two: we allow full computability and reasoning in Coq, extract to more efficient

(but not the most efficient) OCaml code, and take care to avoid unsound physical equality

extraction.
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Chapter 7

Discussion

In this chapter, we consider several practical and theoretical properties of our verified IVL

and its relation to Why3. In particular, we discuss the differences between Why3 and our

semantics, compiler, and API implementation, run Foundational Why3 on the Why3 and

EasyCrypt test suites, list the bugs and issues we discovered in Why3 as a result of this

work, estimate the TCB of our development, mention possible remaining soundness gaps,

and discuss which parts of our semantics could be reused in other contexts. Finally, we

explore extensions and future work.

7.1 Comparing Why3Sem to Why3

Why3Sem aims to capture core Why3, which roughly aligns with the pen-and-paper seman-

tics [48]. There are several features that we do not include or that we handle significantly

differently:

• We do not include function types or lambdas, which are not part of core Why3 (lambdas

are encoded using the ϵ operator), but are handled using special cases in the Why3

tool. Extending our semantics with function types would be possible; the primary

challenge would be in generalizing our encoding of ADTs.

142



• We do not include coinductive predicates. We expect they could be added with a

similar, but dual, encoding to that used for inductive predicates.

• As mentioned in §3.2.1, we include only a subset of allowed ADTs. In particular, we

do not support nested or non-uniform ADTs.

• Our recursive functions use a different termination metric (simple structural recur-

sion rather than lexicographic ordering) and we only support uniform functions and

predicates.

We also do not include components that are outside of core Why3, though they still lie in

the logic language: tuples, records, type aliases (all of which are derived from ADTs), range

types, and float types (these could be added and treated similarly to int and real). Finally,

in Why3, one can mix logical specifications and executable code, as pure WhyML functions

can be used in specifications, while logical functions and predicates can be used in ghost

code. These pure functions can include annotations with decreasing arguments (both ADTs

and integer measures). Since we do not model WhyML, we do not (yet) include any of these

features.

However, Why3Sem does capture a large subset of Why3’s logic language; we note that

most of Why3’s standard library (if pure program functions are translated to their logical

function counterparts) fits comfortably within this fragment. In particular, all 9 inductive

predicates and 12 of 13 ADTs in the library are supported by Why3Sem (the remaining

ADT is a nested type; we could encode this as a mutual ADT instead). We also estimate

that we could formalize approximately 85% of the pure function and predicate definitions in

the standard library; the others use function types and/or pure WhyML code with integer

termination measures. Thus, our formalization captures a very practical subset of Why3, and

some excluded features like non-uniform types and coinduction are rarely used in practice

(§7.2).

Our compiler transformations aim to represent their Why3 counterparts faithfully. There

are a few minor differences; for instance, our eliminate algebraic transformation requires all
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types in a mutual block to be axiomatized or kept. The largest difference is in rewriteF for

eliminating pattern matches– Why3-O includes an optimization that generates let-bindings

rather than implications in some cases (e.g., length (Cons h t) = 1 + length t rather than x

= Cons h t → length x = 1 + length t). This is surprisingly subtle; these are not semanti-

cally equivalent under any valuation, but rather one must generalize the variable valuation

appropriately.1 In any case, we found that this optimization has no performance impact on

the comprehensive Why3 test suite and thus did not implement it.

Finally, Foundational Why3 aims to be compatible with Why3-O, and we attempt to

mimic the existing functionality as closely as possible. The differences are:

• We use big integers rather than machine-length ones.

• We use binary tries to implement sets, maps, and hash tables rather than binary search

trees and ordinary hash tables.

• Our variable substitution mechanism differs substantially. Why3-O uses deferred (i.e.

lazy) substitution when substituting under binders, storing a set of future substitutions

and only executing when necessary. Our eager substitution mechanism is easier to

define (it is difficult to store the deferred substitution set without violating Coq’s

strict positivity condition) and reason about, but it does not scale well to very large

terms or tasks.

• Because of this, our α-equivalence implementation also differs from the significantly

more complex Why3-O version, which must store lists of maps to reason about the

deferred substitutions.

Note that only the first two changes are visible to external clients.

1Specifically, let-bindings are only generated if the variable matched on occurs most recently under a ∀
binder - this means that with a suitable generalization of the valuation, we can instantiate it with any value
of the correct type to prove correctness.
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7.2 Testing Foundational Why3

To demonstrate that Foundational Why3 is (mostly) compatible with Why3-O, practical

to run, and encompasses a usable subset of Why3, we run two comprehensive test suites:

the Why3 test suite and all EasyCrypt tests and examples. All tests were performed on a

commercial laptop (2019 Thinkpad X1 Carbon with an 8-core Intel i7-8565U 1.80GHz CPU).

The Why3 test suite contains a wide variety of tests: for typechecking both well-typed and

ill-typed objects, for checking valid and invalid goals, for replaying proofs of WhyML program

verification, and for extracting code. We cannot quite run all the tests: we modify one

standard library file (out of 45) as well as one typing example (out of 150) because they both

use nested recursion (rose trees). We also omit five of the larger WhyML examples (out of

240), as they use features like nonuniform recursion, nested recursion, and more sophisticated

termination. One of these examples is especially large and becomes prohibitively slow due

to our eager substitution mechanism. Nevertheless, we can run nearly all the Why3 tests,

with only a small slowdown. In total, it takes 8 mins 30 sec on average to run the slightly

modified test suite against Foundational Why3 compared to an average of 5:56 when running

against the Why3 master branch.2 This slowdown is largely due to our less efficient data

structures (especially for hash tables and hash-consing), eager substitution, and our use of

big integers. We do not expect to equal the performance of hand-optimized OCaml, and this

provides some initial evidence that our implementation is still quite practical.

While the Why3 test suite aims to capture a variety of corner cases (e.g. non-uniform

recursion) and is useful to determine which features in Why3 we can and cannot handle, it is

not necessarily realistic and representative of types of goals one might encounter in practice.

Thus, we evaluate Foundational Why3 on the EasyCrypt suite of examples and tests. This

is a particularly valuable set of tests for several reasons. First, EasyCrypt is built atop the

Why3 logic API directly – this means that we are not limited to the types of verification

conditions produced by WhyML. Second, it uses a very large part of the logic API, including

2As of February 21, 2025.
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Test Suite Tests Avg Slowdown 25th %ile 75th %ile Max
Unit Tests 23 1.6x 1.4x 1.8x 2x
Theories 120 1.8x 1.6x 2x 2.9x
Examples 40 1.7x 1.5x 1.8x 3.3x
Total 183 1.8x 1.6x 1.9x 3.3x

Figure 7.1: Result of running Foundational Why3 on EasyCrypt test suites

ADTs, pattern matching (including simultaneous matching), recursive functions, and more.

Finally, EasyCrypt is a proof assistant for cryptography, implementing an ssreflect-like tactic

language with an smt tactic that calls Why3. Thus, it provides strong evidence that Why3

(and by extension, Foundational Why3) is useful for higher-level functional-model reasoning,

one of our goals.

We show the results of running Foundational Why3 on EasyCrypt’s test suites in Figure

7.1. In total, we pass all 183 tests using a solver timeout of 30 seconds. This is highly

encouraging and suggests that the subset of Why3 we have considered is large enough to

handle the kinds of goals that arise in practice when proving properties about functional

models.3

In total (running the tests in parallel on 8 cores), the test suite takes an average of 8:18

using the master branch and 14:55 using Foundational Why3. We show the breakdown of

the tests by type, comprising simple unit tests, the EasyCrypt theories and standard library

– which includes generic results about data structures, linear algebra, rings, polynomials,

and more, as well as basic cryptographic and security primitives like MACs, pseudorandom-

ness, public key encryption, and Diffie-Hellman key exchange – and more involved examples

building on the basic primitives. In general, as the table shows, there is a 1.5-2x slowdown

that is quite consistent between the tests. Note that the slowdown is larger than that of

the Why3 test suite. We hypothesize that this results from EasyCrypt’s many small calls

to smt (and hence to Why3); thus the overhead of initializing Why3 and constructing and

3Note that EasyCrypt does use function types, which we do not (yet) have semantics for but Foundational
Why3 does allow and includes the appropriate typechecks. However, EasyCrypt does not use any features
prohibited by our type system, e.g. non-uniform types or fancier termination conditions.
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transforming goals becomes more significant relative to the time spent by the solver. Indeed,

there are 1226 calls to smt in the EasyCrypt theories and stdlib suite and another 684 calls

in the examples. Nevertheless, despite the slowdown, Foundational Why3 is indeed practical

on real-world examples.

Finally, we test to determine if our optimizations had a real impact on performance.

While we have discussed the need for generating unique identifiers quickly, it is less clear

that hash-consing and fast equality calculation is necessary. Therefore, we attempted to run

the Why3 test suite without fast equality – i.e. simply using structural equality everywhere.

Some tests timed out after about 1.5 hours; the “check valid goals” section of the benchmark

suite – comprising only 15 tests – takes under 7 seconds with fast equality and over 18

minutes without (over 150x slowdown). We conclude that hash-consing and fast equality

computations are absolutely critical for performance and are well worth the additional proof

overhead.

7.3 Bugs and Issues Found in Why3

Throughout our work, we found several bugs in Why3. The first could lead the tool to crash

due to a non-typechecking term:

• The pattern matching exhaustiveness robustness bug we discussed in §4.2.3 causes

a transformation that should always succeed (rewriting when the term in question

appears in the target) to crash with a fatal exception. Note that without the re-

peated (and otherwise unnecessary) typecheck, this would enable one to construct

non-exhaustive pattern matches. We fixed this bug in our implementation by replac-

ing the exhaustiveness check with a provably robust and stronger condition.

The second is a soundness bug but is likely not triggerable in practice:

• The mutable counter that assigns unique tags uses an OCaml int, which could overflow
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(though this is extremely unlikely4), violating the invariant that all tags are globally

unique. While this would not be a soundness issue for hash-consed AST nodes (though

it would be very confusing for the user and make the semantics unclear), it is a bigger

problem for α-conversion, as substitution is not capture-avoiding in all cases. This can

lead to unsoundness: ∀x1∀x2, x1 = x2 is false, but after α-conversion, if the counter

wraps around, it can become ∀x1∀x1, x1 = x1, which is true. In Foundational Why3,

we use a big integer to avoid this problem.

Finally, there are several cases where Why3’s Coq back-end outputs ill-typed code. These

violate the principle that after the appropriate transformations have been run, the output

lies in the subset of Why3 supported by a particular solver.

• There are several such bugs related to termination. First, if one uses lexicographic

termination and outputs to Coq, the resulting Coq Fixpoint fails the termination check.

• Next, Why3 allows termination on non-strict subterms (e.g. the size example in §2.2.2);

this is similarly translated to a syntactically identical Fixpoint that fails to pass Coq’s

checker.

• Additionally, functions that rely on Why3’s “lazy” termination analysis (e.g. a and b

in §2.2.2) fail when given to Coq.

• Finally, Why3 allows non-uniform type parameters in mutually recursive types; once

again, these are straightforwardly translated to the corresponding Inductive in Coq,

which fails to typecheck, as Coq does not allow such non-uniformity.

These examples demonstrate that even if the IVL itself is sound, it is still very difficult to

connect verification tools at different layers. Why3 is less powerful than Coq (with classical

axioms), but this does not mean that it is a strict syntactic subset. Our work (and MetaCoq)

could enable a translation to Coq that is provably sound and well-typed, but this relies on a

formal semantics to avoid such edge cases and gaps. Though we did not examine the output

4On 64-bit machines, int is a 63-bit integer; if one generated 10 billion tags per second, it would take 30
years to overflow. However, int is only 31 bits on a 32-bit machine; this could easily overflow.
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Component LOC
Common (Sets, Maps, HLists, etc) 7K
Why3Sem

Syntax (+Variables, Types, Contexts) 3K
Typing (+Typechecker) 6K
Basic Semantics (+Equivalence Lemma, Interpretations) 4K
ADT Encoding 2K
Recursive Function Encoding 6K
Inductive Predicate Encoding 2K
Substitution (Type+Term) and α-Equivalence 13K
Logic (+Tasks, Transformations, Full Interps) 2K

Total Why3Sem 38K
Proof System 8K
Compiler

eliminate definition 2.5K
compile and compile match 11K
eliminate algebraic 11K
eliminate inductive 3K

Total Compiler 27.5K
Foundational Why3

coq-util (Monads, State, etc) 1K
util (Set, Map, hash-consing, etc) 2K
core (Type, Term, Decl, Task, Trans + term traverse) 6K
transform 1K
proofs (generic, substitution, eliminate let) 11K

Total Foundational Why3 21K

Figure 7.2: Lines of Coq code for each component

from Why3 to other solvers, it is likely that similar subtle differences have crept in – formal

proof is critical for ensuring compatibility.

7.4 Quantitative Metrics and TCB

Figure 7.2 gives the approximate number of lines of Coq code for each component in our

development. We note that some of the values are a bit inflated; we generally did not optimize

for size of proofs and definitions (for instance, we give a separate interface for std++ sets

and maps rather than using them directly), our automation could be improved, and some

proofs are repetitive (e.g. if the term and formula cases are similar). However, this gives a
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rough idea of the proof/formalization effort involved in each component.

While the Coq development is large, only small parts must be trusted. The main trusted

component is our formalization of the P-FOLDR semantics: while we validate the semantics

by showing that it is useful, the user must ultimately trust that it faithfully represents the

meaning of the various components in the logic. To that end, we include the following in

the TCB: the definitions of interpretations (pi dom and pi funpred), the definitions of valua-

tions (val typevar and val vars), the basic semantics (get arg list, match val single, match rep,

term rep, and formula rep), the properties of ADTs and full interpretations, and the seman-

tics of tasks and transformations (task valid and valid trans).5 In total, these components

comprise approximately 440 lines of Coq definitions, which are specifically designed to be

intuitive and stay close to the pen-and-paper definitions. Note that these also rely on more

basic data structures: lists, maps, and heterogeneous lists; each such definition is only a few

lines and quite standard.

Foundational Why3 adds additional sources of trust (even after the soundness proofs are

completed): the eval functions, the definition of the State Hoare Monad, our state invari-

ant, the definition of task validity, and the definition of (stateful) transformation soundness:

together these comprise about 500 lines of Coq definitions (about 150 of which are sim-

ple functions extracting the types, declarations, and identifiers from a task for the state

invariant). Note that if one wanted to verify a single task’s construction and compilation

end-to-end, the state invariant would fall out of the TCB – one would prove that the API

constructors establish the invariant and that the transformations preserve it. The OCaml

implementation requires trusting the modified extraction directives (about 300 lines of code,

of which 80 are integer constants) the Coq extraction pipeline, the dune postprocessing, and

the OCaml compiler. Of course there are other sources of trust intrinsic to our approach: the

Coq kernel, the consistency of CIC, the OCaml compiler used to compile Coq, the hardware,

etc. Nevertheless, it is clear that the TCB is significantly smaller than that of existing auto-

5Note that we do not need to trust the encodings of ADTs, recursive functions, and inductive predicates
– we prove that they satisfy the (trusted) specification.
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mated tools. For instance, the specific files in Why3-O we implement in Foundational Why3

comprise about 7K LOC (which also rely on libraries, some of which we replaced with Coq

versions); the broad parts of Why3 we are interested in (utilities, logic API, and transforma-

tions) comprise about 29K LOC. Moreover, the nature of this trust is different: Foundational

Why3 requires one to trust semantic definitions designed to be interpretable and uncontro-

versial. Why3, as with any unverified tool, requires one to trust complex implementations

without formal specifications.

We have proved soundness only for a core subset of Why3, and we identify 3 likely places

for possible soundness gaps:

1. As we have seen, our termination checker differs significantly from Why3’s. Termi-

nation checking is tricky to implement correctly; Coq for instance has found several

critical bugs in the guard (termination) checker.6 Why3’s checker uses a lexicographic

ordering on structural inclusion, which would not be too difficult to include in our

semantics, and the “lazy” method that checks only the paths called on the control flow

graph, which would be significantly more challenging to verify.

2. We do not model the connection between logical and WhyML code – one can define

logic functions by writing pure WhyML functions with well-founded measures, a pos-

sible source of unsoundness for similar reasons as above. These termination conditions

are checked at verification time; we would need to reason about the semantics and

translation to SMT simultaneously.

3. A final source of unsoundness concerns the last step, where Why3 prints the trans-

formed task into an SMT-LIB2 file. As we saw with the Coq back-end, it is easy to

accidentally ignore subtle mismatches between the two layers, and verifying the final

translation to SMT would be critical.

6https://github.com/coq/coq/blob/master/dev/doc/critical-bugs.md
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7.5 Reusability and Axioms

Here, we discuss the potential utility of Why3Sem for modelling the semantics of non-Why3

logics with similar expressivity (Dafny, VeriFast, Cryptol, etc). In particular, our W-type

and ADT implementation is independent of Why3 definitions and could be reused more

generally. In principle, our inductive predicate encoding could be refactored fairly simply to

eliminate dependence on Why3 (it depends on formula rep, but this could be generalized);

the proofs about the least predicate and inversion properties would hold. Our recursive

function encoding, on the other hand, is unlikely to be as useful for other projects, as

it is tightly wedded to details of pattern matching and Why3 typing rules (all of which

are standard, but which force the tool in question to include a virtually identical set of

features). We note that more broadly, our approach relies on the overall design of Why3,

in particular in its distinction between typing and semantics. Dafny, for instance, combines

the two: certain typing conditions (e.g. pattern matching exhaustiveness, recursive function

termination) are checked at verification time. This increases flexibility (e.g. one can have a

non-exhaustive match and prove that the excluded case is unreachable) but would require a

somewhat different design. In particular, rather than prove that for well-typed proof tasks,

transformations are sound, we would need to prove that the generated formulas imply both

well-typing and semantic properties, a more monolithic approach.

Our compiler is more specialized to Why3, though as we mentioned, our inductive pred-

icate encoding and axiomatization is a partial exception to this. We additionally showed

in §5.5 that our approach to axiomatizing ADTs extends to other possible axiomatizations.

Finally, the pattern matching compiler is quite general: our implementation already allows

arbitrary term-like action types, the termination proofs would be useful for any matrix-

decomposition-based method, and the proofs of soundness could be refactored to remove

dependence on term rep (though it is crucial that the semantics for pattern matching be-

haves like match rep).

Separately, one could imagine performing a similar formalization for a stronger logic
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like the Calculus of Inductive Constructions. MetaCoq [102] (see §3.5) provides syntax and

typing rules, but building a denotational model for PCUIC (the logic formalized for Meta-

Coq) would require additional effort and axioms beyond our work. Gödel’s incompleteness

theorem ensures that one cannot write a model of CIC inside Coq without additional ax-

ioms. MetaCoq also needs additional axioms, but the choice of axioms is telling: strong

normalization for the theory they model – an axiom about the reduction theory. Instead, a

denotational model would need a model-theoretic axiom, such as the existence of a suitable

large cardinal.

The axioms we use are based primarily on the classical nature of Why3; we use classical

logic (Law of the Excluded Middle + Hilbert choice) because Why3’s logic has these features,

but our proofs do not rely on classical reasoning beyond this. Under the above axioms, Prop

and bool are essentially equivalent, so we use them interchangeably, but if one wanted a

semantics for an intuitionistic version of Why3 (or some other logic), we could construct a

very similar formalization using only Prop. To that end, we consciously restricted the use of

classical axioms in 3 ways:

1. We did not assume classical axioms in the W-type and ADT encoding.

2. We proved (axiom-free) decidability for many predicates (e.g. typechecking, finding

the decreasing index for recursive functions), even when only used in contexts where

Hilbert’s ϵ is assumed.

3. When possible, we used boolean predicates rather than Prop (in contexts where the

two are not equivalent) to get axiom-free proof irrelevance.

However, we do rely frequently on functional extensionality and heavily on the Uniqueness

of Identity Proofs (UIP) axiom (implied by the law of the excluded middle) for dealing with

dependent typecasts.
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7.6 Future Work

Improving Foundational Why3’s Guarantees Currently, there is a gap remaining

between Foundational Why3 and Why3Sem, as the proofs of equivalence between the two

layers are incomplete. We have shown how such proofs can be implemented, and there are no

large obstacles to completing them.7 Additionally, the theorem statements themselves can be

strengthened – we could give a proper type system for Foundational Why3 beyond types wf,

very similar (though not identical) to that of P-FOLDR and prove (1) the semantics of well-

typed Foundational Why3 terms and tasks can be given by well-typed core terms and tasks

and (2) every Foundational Why3 function and transformation, given well-typed inputs, will

succeed. Finally, we would show that the API constructors produce well-typed AST nodes.

Composing these results would allow us to prove that constructing tasks using the API

and then running transformations is sound, well-typed, and does not crash, with very few

assumptions on the global state.

Generalizing Why3Sem As we discussed in §7.5, our formalization is particular to Why3,

but many individual components are not – ADTs, inductive predicates, pattern matching,

and recursive functions are all widely used in languages and verification tools. Our W-type-

based ADT encoding in particular could be generalized, both to be completely independent

of Why3 and to support a larger class of ADTs, e.g. those with function arguments, GADTs,

and even possibly dependent types. Though many of these are not necessary for Why3, such

an encoding could be helpful in more general contexts. It would also be useful to fully

generalize the pattern matching compiler and its proofs, including to enable more heuristics

about which rows/columns/constructors to expand and simplify. This would result in a

generic framework for writing verified, efficient pattern matching compilers.

7Some transformations like eliminate algebraic are implemented fairly differently – the Foundational Why3
implementation uses state to keep track of newly created symbol names, while the purely functional compiler
version needs no such state. To prove equivalence, one could write an alternate core eliminate algebraic and
prove equivalence with the compiler’s implementation, separately proving equivalence with the Foundational
Why3 version as described in §6.3.4.
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A Coq Back-end for Why3 Our proof system shows that one can soundly prove Why3

goals in Coq, but this system is impractical and slow. Instead, we could generalize our

semantics for ADTs and full interpretations to allow users to provide candidate represen-

tations satisfying the needed properties. Then, we could use MetaCoq to prove that Coq

types and functions have these properties, enabling one to reason about Why3 proof goals

in idiomatic Coq rather than in the deep embedding. For example, one would use Coq lists

rather than the W-type encoding, and induction would be done directly within Coq instead

of as a tactic traversing the deeply embedded proof task AST. This would then serve as a

verified alternative to the existing Why3 Coq back-end and would permit a seamless and

proved-sound implementation of Why3’s theory realization capabilities.

A Why3 Back-end for Coq Separately, we could use this verified Why3 implementation

as a back-end to Coq itself to provide more automation. We would use MetaCoq to reify

first-order Coq goals and convert them to our Why3 embedding, thereby increasing the

automation achievable for many goals. However, it is unclear if this would give us much

beyond Sniper, which is built on SMTCoq and uses a similar reification. It could enable

use of solvers and features beyond those supported by SMTCoq, though without soundness

proofs.

End-to-End Soundness There are still two pieces missing for this system to be a fully

foundational IVL – first, while we have focused on the logically interesting and complex

transformations for this thesis, there are additional transformations needed for practical use

– for propositional simplification, eliminating constants, using SMT solver built-ins (e.g.

ints), etc. Implementing and verifying these transformations should be significantly more

straightforward than those we have already completed. Second, we must extend the sound-

ness guarantees to the SMT solver output. Here the picture is a bit murky: while there is

some work towards this goal (§1.2.1), it will likely require further advances in SMT solver

proof certificates until it is practical to remove the solver itself from the TCB. We note,
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however, that soundness is not all-or-nothing; reducing the TCB to the single solver layer is

a big improvement from additionally trusting another IVL layer and the boundary.

Connecting to Front-End Verifiers Lastly, we would like to connect this work with a

front-end verifier, particularly VST. Foundational Why3 could serve as an alternate back-

end for simpler C specifications whose proof does not require complex inductive reasoning.

VST-A [114] could be particularly helpful in this respect, as it transforms the annotated

program into a set of straight-line program fragments with easier proof goals. There are still

open questions concerning the best way to integrate such a back-end with the existing VST

methodology – since VST function specifications can involve arbitrary Coq propositions,

we would need a principled and ergonomic way of combining first-order and higher-order

specifications.

7.7 Conclusion

In this thesis, we presented a foundationally verified version of the Why3 intermediate ver-

ification language that includes the features critical for writing and reasoning about rich,

functional specifications – polymorphism, algebraic data types, pattern matching, recursive

functions and predicates, and inductive predicates. In Chapter 2, we described the P-FOLDR

logic extending FOL with these features and formalized the syntax and type system of this

logic. In Chapter 3, we gave a novel formal semantics for P-FOLDR in Coq and presented a

sound-by-construction proof system to facilitate reasoning (including inductive reasoning) in

this logic. In Chapter 4, we gave the first proved-correct general-purpose pattern matching

compiler. In Chapter 5, we wrote and verified a compiler from P-FOLDR to polymorphic

first-order logic, providing the first mechanized proof of a first-order axiomatization of ADTs.

In Chapter 6, we described a Coq implementation of a subset of the Why3 OCaml API, using

a lightweight design based on modified extraction to OCaml to bridge the gap between state-

ful and stateless code. Finally, in Chapter 7, we demonstrated that this implementation can
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be proved correct, is practical, and encompasses a large enough subset of Why3 to handle

goals that arise in real-world examples. We believe that this work – the first real-world IVL

with a machine-checked proof of correctness – fills a gap in the verification-tool landscape

and that it can serve as a key building block to enable foundationally sound program verifiers

that retain the automation, usability, and convenience of IVL- and SMT-based tools.
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[49] Filliâtre, J.-C., and Conchon, S. Type-safe modular hash-consing. In Proceed-

ings of the 2006 Workshop on ML (Portland, Oregon, Sept. 2006), ML ’06, Association

for Computing Machinery, pp. 12–19.

164
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