Verified Erasure Correction in
Coq with MathComp and VST

Josh Cohen
Princeton University
8/9/2022

With Qinshi Wang and Andrew Appel

x

| |
Error-Correcting Codes | |
| |
| |

e When we send data over network, some
may not arrive

® |n some cases, retransmission infeasible /T hparity
or impossible packets
o low latency applications, satellite _

communications, RAID
e Solution: add additional “parity” Kk disks
packets/bits and reconstruct of lost data

e Parities chosen using Error-Correcting
Code

e Lots of ECCs exist (Hamming,

Reed-Solomon, Convolutional, BCH, etc),
most based on fairly sophisticated math
e Correctness is difficult to formally prove

h parity disks

Project Goals

e Formally verify real-world C implementation of FEC with
Coq and the Verified Software Toolchain (VST)

e C code was originally written by Anthony McAuley of
Bellcore in ‘90s, in active use since

e Algorithm is modified Reed-Solomon, developed by Rabin
[Journal of the ACM 1989], McAuley [SIGCOMM 90], and

others
o Includes unpublished optimizations, correctness unknown to authors
e |Intriguing target for verification
o Need to connect high-level correctness with low-level implementation
o Algorithm based on finite fields, polynomials, linear algebra, low level
uses clever C programming tricks

Verification Overview

Mathemat:cal
Components

¥

Functional Model

AN
Verified

Software
Toolchain

N
C Code

CompCert H

Layered verification - separate proofs with a
functional model
CompCert (Leroy) - C compiler written and
verified in Coq
VST (Appel) - C program logic and proof
automation

o Proved sound wrt CompCert C
Mathematical Components - large library of

formalized math
o Ex: groups, rings, fields, matrices, polynomials +
theorems
Very different ecosystem, types, tactics
o Unclear if VST+MathComp could be used together

Reed-Solomon Coding

Interpret data as a polynomial over a finite
field

o e (ag,al, Ce ,ak_1> — Qg+ a1 + ...+ Q1T
Evaluate polynomial at k+h distinct points _ =

k—1

in the field 111
Equivalently, multiply by Vandermonde [a.o aq a-?.] | Xy X1 X9

. 2 92 9
matrix Tro r7 25

. : | Y0 M1 2

To make systematic, multiply by
row-reduced Vandermonde matrix AN TP 100 2, 20 a3
Decoder is a bit complicated, but not as [ax ax» ass ax axs aw | — [0 1 0 2y x5 6
bad as full Reed-Solomon a3y azy a3z azqy azs age 001 @7 23 @

Will be able to recover data if receive at
least k packets of k+h total

Verification Details

Correctness
(;;Otf]‘z;tﬁ;) W e We really need 2 functional models
1. Define high-level functional model with
Functional Model MathComp types
MIFL(m.). L. {poly F) 2. Prove correctness properties of
Type translation functional model (MathComp/Coq) .
and equivalence 3. Define low-level functional model with
Matheomn 3 vST) VST/CompCert types and prove
ow-Lovel equivalence
ow-Leve .
Functional Model 4., Provg that C code refines low-level
list(list byte), Z, list bool functional model (VST)
Refinement Proof e Allows us to use VST and Mathcomp
(VST) together

C Code

Verification Example - Gaussian elimination

e Standard algorithm in linear algebra to row reduce a matrix over a field
o transform using row swaps, scalar multiplication, and adding multiples of rows

e Can be used to calculate inverses, determinants, solve systems of linear
equations
e In this application - used to create weight matrix and invert matrix in decoder

0 xy 29 a3

ayy a2 iy g a1 apg 10
o] @99 @93 aoq as; asg | — |0 1 0 x4 x5 w4
as] ago 33 asy ass asg 00 1 x7 xg a9

Verification Example - Gaussian elimination

sform (fec sym * p, fec sym i max, fec sym j max) {

fec_sym *n, *q, *r, inv;
fec sym i, j, k, w;

(k = 0; k <1imax; k++) {
; 1< 1 max; i++){

p+ (1* jmax) + j max - 1);
- j_max;

Definition gaussian elim {m n} (A: 'M[F] (m, n)) :=

(*(q - k) =0) {
(“lemm(all 1c 1 (gauss all steps A (insub ©%N) (insub O%N)).
(FEC_ERR_TRANS FAILED); — — = 2ad

((p*(\/*]max)‘\]max—,—k) 1= 0){
1itf ("FEC: su

wap rows (not done yet!)\n");
(FEC_ERR TRANS SWAP_NOT DONE) ;

}

(p+(k j_max) + j max - 1);

Gaussian _
Al [1] A
(i=0; i <imax; 1%+) {

(i1!=k) { elim

qg=(p+ (i*jmax) + j max - 1);

(i =0; j < j_max; j++) { .
X(qi- 1) =gz §) Sk)

i<imax - 1; i++) {
* j_max) + j _max - 1);

*q = 1)1;

Verification Example - Gaussian elimination

Correctness

Properties ﬁ 1. Define functional model and prove

(Mathcomp)
correctness properties

Functional Model
‘M[F]_(m, n), ‘l_n, {poly F}

Definition gaussian elim {m n} (A: 'M[F] (m, n)) :=

all 1c 1 (gauss all steps A (insub 0%N) (insub O%N)).

Type translation Gaussian
and equivalence |: A ‘ [:| N |: [‘ A_ 1 i|
4

lemmas
Mathcomp + VST .
(p+V3T) elim
LO_W'LeveI Definition find invmx {n} (A: 'M[F] n) :=
Functional Model rsubmx (gaussian elim (row mx A 1%:M)).
list(list byte), Z, list bool
Refinement Proof Lemma gaussian finds invmx: forall {n} (A: 'M[F] (n, n)),
(VST) A \in unitmx ->
find invmx A = invmx A.

C Code

Verification Example - Gaussian elimination

Correctness
Properties
(Mathcomp)

Functional Model
‘M[F]_(m, n), ‘l_n, {poly F}

Type translation
and equivalence
lemmas
(Mathcomp + VST)

Low-Level

Functional Model
list(list byte), Z, list bool

Refinement Proof
(VST)

C Code

2. Define low-level functional model and

prove equivalence

Definition lmatrix := list (list byte).

Definition gauss restrict list m n (mx: lmatrix) :=
all 1c one partial m n (gauss all steps list partial m n mx m) (m-

Lemma gauss restrict list equiv: forall {m n} (mx: lmatrix) (Hmn:
wf lmatrix mx m n ->
lmatrix to mx m n (gauss restrict list m n mx) =
gaussian elim restrict noop (lmatrix to mx m n mx) (le Z N Hmn).

1).

m <= n),

10

Verification Example - Gaussian elimination

Correctness
Properties
(Mathcomp)

Functional Model
‘M[F]_(m, n), ‘l_n, {poly F}

Type translation
and equivalence
lemmas
(Mathcomp + VST)

Low-Level

Functional Model
list(list byte), Z, list bool

Refinement Proof
(VST)

C Code

3. Define and prove VST spec using low-level functional model

int fec matrix transform (fec sym * p, fec sym i max, fec sym j max)

Definition fec matrix transform spec :=
DECLARE fec matrix transform
WITH gv: globals, m : Z, n : Z, mx : list (list byte), s : val, sh: share
PRE [tptr tuchar, tuchar, tuchar]
PROP (0 < m <= n; n <= Byte.max unsigned; wf lmatrix mx m n;
strong _inv_list m n mx; writable share sh)
PARAMS (s; Vubyte (Byte.repr m); Vubyte (Byte.repr n))
GLOBALS (gv)
SEP (FIELD TABLES gv;
data at sh (tarray tuchar (m * n)) (map Vubyte (flatten mx mx)) s)
POST [tint]
PROP ()
RETURN (Vint Int.zero)
SEP(FIELD TABLES gv;
data at sh (tarray tuchar (m * n))
(map Vubyte (flatten mx (gauss restrict list m n mx))) s).

Lemma body fec matrix transform : semax body Vprog Gprog

f fec matrix transform fec matrix transform spec.

1

Challenge - Restricted Gaussian Elimination

e C code implements “restricted”

=2

o

. - . a c - 0
Gaussian elimination a 0b c v 01 g b b g
| elements t de f 0¢1 1 040 L1
O ¢ : € € g
nolswaps, assumes all elements In curren 00 g h — 00 1 %, — 00 1 g
column are nonzero . " 00 i] 00 1 % 00 0 ‘IL—i—;
e Only works of all elements in r'" column ’
are nonzero!
e C code returns errors if this condition is
violated (+(q -) = 0) {
o “FEC: swap rows (not done yet!)” s (FEC_ERR TRANS_FATLED);
e Suggests that authors were unclear U = T (R TIb v

(FEC_ERR_TRANS_SWAP_NOT DONE);

whether this was sufficient

12

Challenge - Restricted Gaussian Elimination

e Determined and proved in Coq: Restricted Gaussian Elimination equal to full
Gaussian Elimination iff a certain m? submatrices (for m x n matrix) are all

invertible
o VERY strong condition - does not hold of identity, diagonal, triangular, etc

e In this application: run Gaussian Elim on Vandermonde matrix and submatrices

of row-reduced Vandermonde matrix
e Property holds of these matrices (nontrivially) due to properties of
Vandermonde matrices and polynomials

13

Verifying the C Code

e Difficult to verify - written over 25 years ago, never designed to be verified
e One challenge: represents matrices as 2D global arrays, partially-filled 2D local

arrays, 1D arrays, pointers, and pointer to array of pointers
o Need lemmas and tactics to convert between these, added to VST

e F[ound 1bug

14

Bug in Implementation

q=(p+(i*j_max)+j_max-1)
m = q -j_max;
for (n=q n--) {

//loop body

}

In loop; when i=0, m points to p-1

n > m is undefined behavior!

VST will not let us prove this program correct without modifying it

VST gives strong guarantees about program behavior - no undefined behavior,
no extra |O/system calls/etc

15

Related Work

In Network Function Verification, VigNAT [Zaostrovnykh et al., SIGCOMM
2017], Vigor [Zaostrovnykh et al., SOSP 2019], and Gravel [Zhang et al., NSDI
2020] use more automated methods to verify NAT, load balancer, firewall, and
more, but have restrictions on state and cannot handle things like unbounded
loops

Various Error-Correcting Codes have been formalized in Coq [Affeldt et al.,
Journal of Automated Reasoning 2020 and others], Lean [Hagiwara et al.,
ISITA 2015 and Kong et al., ISITA 2018], and ACL2 [Nasser et al., Journal of
Electronic Testing 2020]

Our work is the first to connect a sophisticated ECC with a real-world, efficient
implementation

16

I

Functional Model
‘M[F]_(m, n), ‘l_n, {poly F}

Conclusion and Future Work

e Core FEC code is fully verified
(https://qgithub.com/verified-network-toolchain/Verified

-FEC)
e Ongoing - code that handles buffer and packet
management (calls core FEC code) Low-Level
o Specification is much more difficult - need to deal with streams Functional Model
of packets and define usable spec list(list byte), Z, list bool
e Possible future work - implement incremental FEC ﬂ ﬁ
encoding and decoding at line rate on an FPGA, verify
correctness according to same functional model C Code FPGA ‘

e Other future projects connecting MathComp and VST
(numerical methods)

17

https://github.com/verified-network-toolchain/Verified-FEC
https://github.com/verified-network-toolchain/Verified-FEC

Questions?

Thanks for listening!

18

